libretro-dolphin/Source/Core/VideoBackends/D3D12/StreamBuffer.cpp
David Korth f5fe692842 Use pre-increment for iterators instead of post-increment.
Pre-increment is more efficient, since it doesn't have to return the
old iterator.
2019-12-29 23:45:02 -05:00

250 lines
8.2 KiB
C++

// Copyright 2019 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/D3D12/StreamBuffer.h"
#include <algorithm>
#include <functional>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/D3D12/DXContext.h"
namespace DX12
{
StreamBuffer::StreamBuffer() = default;
StreamBuffer::~StreamBuffer()
{
if (m_host_pointer)
{
const D3D12_RANGE written_range = {0, m_size};
m_buffer->Unmap(0, &written_range);
}
// These get destroyed at shutdown anyway, so no need to defer destruction.
if (m_buffer)
m_buffer->Release();
}
bool StreamBuffer::AllocateBuffer(u32 size)
{
static const D3D12_HEAP_PROPERTIES heap_properties = {D3D12_HEAP_TYPE_UPLOAD};
const D3D12_RESOURCE_DESC resource_desc = {D3D12_RESOURCE_DIMENSION_BUFFER,
0,
size,
1,
1,
1,
DXGI_FORMAT_UNKNOWN,
{1, 0},
D3D12_TEXTURE_LAYOUT_ROW_MAJOR,
D3D12_RESOURCE_FLAG_NONE};
HRESULT hr = g_dx_context->GetDevice()->CreateCommittedResource(
&heap_properties, D3D12_HEAP_FLAG_NONE, &resource_desc, D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr, IID_PPV_ARGS(&m_buffer));
CHECK(SUCCEEDED(hr), "Allocate buffer");
if (FAILED(hr))
return false;
static const D3D12_RANGE read_range = {};
hr = m_buffer->Map(0, &read_range, reinterpret_cast<void**>(&m_host_pointer));
CHECK(SUCCEEDED(hr), "Map buffer");
if (FAILED(hr))
return false;
m_size = size;
m_gpu_pointer = m_buffer->GetGPUVirtualAddress();
m_current_offset = 0;
m_current_gpu_position = 0;
m_tracked_fences.clear();
return true;
}
bool StreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment)
{
const u32 required_bytes = num_bytes + alignment;
// Check for sane allocations
if (required_bytes > m_size)
{
PanicAlert("Attempting to allocate %u bytes from a %u byte stream buffer",
static_cast<uint32_t>(num_bytes), static_cast<uint32_t>(m_size));
return false;
}
// Is the GPU behind or up to date with our current offset?
UpdateCurrentFencePosition();
if (m_current_offset >= m_current_gpu_position)
{
const u32 remaining_bytes = m_size - m_current_offset;
if (required_bytes <= remaining_bytes)
{
// Place at the current position, after the GPU position.
m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_last_allocation_size = num_bytes;
return true;
}
// Check for space at the start of the buffer
// We use < here because we don't want to have the case of m_current_offset ==
// m_current_gpu_position. That would mean the code above would assume the
// GPU has caught up to us, which it hasn't.
if (required_bytes < m_current_gpu_position)
{
// Reset offset to zero, since we're allocating behind the gpu now
m_current_offset = 0;
m_last_allocation_size = num_bytes;
return true;
}
}
else
{
// We have from m_current_offset..m_current_gpu_position space to use.
const u32 remaining_bytes = m_current_gpu_position - m_current_offset;
if (required_bytes < remaining_bytes)
{
// Place at the current position, since this is still behind the GPU.
m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_last_allocation_size = num_bytes;
return true;
}
}
// Can we find a fence to wait on that will give us enough memory?
if (WaitForClearSpace(required_bytes))
{
m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_last_allocation_size = num_bytes;
return true;
}
// We tried everything we could, and still couldn't get anything. This means that too much space
// in the buffer is being used by the command buffer currently being recorded. Therefore, the
// only option is to execute it, and wait until it's done.
return false;
}
void StreamBuffer::CommitMemory(u32 final_num_bytes)
{
ASSERT((m_current_offset + final_num_bytes) <= m_size);
ASSERT(final_num_bytes <= m_last_allocation_size);
m_current_offset += final_num_bytes;
}
void StreamBuffer::UpdateCurrentFencePosition()
{
// Don't create a tracking entry if the GPU is caught up with the buffer.
if (m_current_offset == m_current_gpu_position)
return;
// Has the offset changed since the last fence?
const u64 fence = g_dx_context->GetCurrentFenceValue();
if (!m_tracked_fences.empty() && m_tracked_fences.back().first == fence)
{
// Still haven't executed a command buffer, so just update the offset.
m_tracked_fences.back().second = m_current_offset;
return;
}
UpdateGPUPosition();
m_tracked_fences.emplace_back(fence, m_current_offset);
}
void StreamBuffer::UpdateGPUPosition()
{
auto start = m_tracked_fences.begin();
auto end = start;
const u64 completed_counter = g_dx_context->GetCompletedFenceValue();
while (end != m_tracked_fences.end() && completed_counter >= end->first)
{
m_current_gpu_position = end->second;
++end;
}
if (start != end)
m_tracked_fences.erase(start, end);
}
bool StreamBuffer::WaitForClearSpace(u32 num_bytes)
{
u32 new_offset = 0;
u32 new_gpu_position = 0;
auto iter = m_tracked_fences.begin();
for (; iter != m_tracked_fences.end(); ++iter)
{
// Would this fence bring us in line with the GPU?
// This is the "last resort" case, where a command buffer execution has been forced
// after no additional data has been written to it, so we can assume that after the
// fence has been signaled the entire buffer is now consumed.
u32 gpu_position = iter->second;
if (m_current_offset == gpu_position)
{
new_offset = 0;
new_gpu_position = 0;
break;
}
// Assuming that we wait for this fence, are we allocating in front of the GPU?
if (m_current_offset > gpu_position)
{
// This would suggest the GPU has now followed us and wrapped around, so we have from
// m_current_position..m_size free, as well as and 0..gpu_position.
const u32 remaining_space_after_offset = m_size - m_current_offset;
if (remaining_space_after_offset >= num_bytes)
{
// Switch to allocating in front of the GPU, using the remainder of the buffer.
new_offset = m_current_offset;
new_gpu_position = gpu_position;
break;
}
// We can wrap around to the start, behind the GPU, if there is enough space.
// We use > here because otherwise we'd end up lining up with the GPU, and then the
// allocator would assume that the GPU has consumed what we just wrote.
if (gpu_position > num_bytes)
{
new_offset = 0;
new_gpu_position = gpu_position;
break;
}
}
else
{
// We're currently allocating behind the GPU. This would give us between the current
// offset and the GPU position worth of space to work with. Again, > because we can't
// align the GPU position with the buffer offset.
u32 available_space_inbetween = gpu_position - m_current_offset;
if (available_space_inbetween > num_bytes)
{
// Leave the offset as-is, but update the GPU position.
new_offset = m_current_offset;
new_gpu_position = gpu_position;
break;
}
}
}
// Did any fences satisfy this condition?
// Has the command buffer been executed yet? If not, the caller should execute it.
if (iter == m_tracked_fences.end() || iter->first == g_dx_context->GetCurrentFenceValue())
return false;
// Wait until this fence is signaled. This will fire the callback, updating the GPU position.
g_dx_context->WaitForFence(iter->first);
m_tracked_fences.erase(m_tracked_fences.begin(),
m_current_offset == iter->second ? m_tracked_fences.end() : ++iter);
m_current_offset = new_offset;
m_current_gpu_position = new_gpu_position;
return true;
}
} // namespace DX12