mirror of
https://github.com/libretro/dolphin
synced 2024-11-04 20:43:51 -05:00
86f8768268
These are only ever used with ShaderCode instances and nothing else. Given that, we can convert these helper functions to expect that type of object as an argument and remove the need for templates, improving compiler throughput a marginal amount, as the template instantiation process doesn't need to be performed. We can also move the definitions of these functions into the cpp file, which allows us to remove a few inclusions from the ShaderGenCommon header. This uncovered a few instances of indirect inclusions being relied upon in other source files. One other benefit is this allows changes to be made to the definitions of the functions without needing to recompile all translation units that make use of these functions, making change testing a little quicker. Moving the definitions into the cpp file also allows us to completely hide DefineOutputMember() from external view, given it's only ever used inside of GenerateVSOutputMembers().
827 lines
28 KiB
C++
827 lines
28 KiB
C++
// Copyright 2010 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <memory>
|
|
|
|
#include "Common/BitSet.h"
|
|
#include "Common/ChunkFile.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MathUtil.h"
|
|
|
|
#include "Core/Analytics.h"
|
|
#include "Core/ConfigManager.h"
|
|
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/BoundingBox.h"
|
|
#include "VideoCommon/DataReader.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/GeometryShaderManager.h"
|
|
#include "VideoCommon/IndexGenerator.h"
|
|
#include "VideoCommon/NativeVertexFormat.h"
|
|
#include "VideoCommon/OpcodeDecoding.h"
|
|
#include "VideoCommon/PerfQueryBase.h"
|
|
#include "VideoCommon/PixelShaderManager.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/SamplerCommon.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/TextureCacheBase.h"
|
|
#include "VideoCommon/VertexLoaderManager.h"
|
|
#include "VideoCommon/VertexShaderManager.h"
|
|
#include "VideoCommon/VideoBackendBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
std::unique_ptr<VertexManagerBase> g_vertex_manager;
|
|
|
|
// GX primitive -> RenderState primitive, no primitive restart
|
|
constexpr std::array<PrimitiveType, 8> primitive_from_gx{{
|
|
PrimitiveType::Triangles, // GX_DRAW_QUADS
|
|
PrimitiveType::Triangles, // GX_DRAW_QUADS_2
|
|
PrimitiveType::Triangles, // GX_DRAW_TRIANGLES
|
|
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_STRIP
|
|
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_FAN
|
|
PrimitiveType::Lines, // GX_DRAW_LINES
|
|
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
|
|
PrimitiveType::Points, // GX_DRAW_POINTS
|
|
}};
|
|
|
|
// GX primitive -> RenderState primitive, using primitive restart
|
|
constexpr std::array<PrimitiveType, 8> primitive_from_gx_pr{{
|
|
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS
|
|
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS_2
|
|
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLES
|
|
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_STRIP
|
|
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_FAN
|
|
PrimitiveType::Lines, // GX_DRAW_LINES
|
|
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
|
|
PrimitiveType::Points, // GX_DRAW_POINTS
|
|
}};
|
|
|
|
// Due to the BT.601 standard which the GameCube is based on being a compromise
|
|
// between PAL and NTSC, neither standard gets square pixels. They are each off
|
|
// by ~9% in opposite directions.
|
|
// Just in case any game decides to take this into account, we do both these
|
|
// tests with a large amount of slop.
|
|
static constexpr float ASPECT_RATIO_SLOP = 0.11f;
|
|
|
|
static bool IsAnamorphicProjection(const Projection::Raw& projection, const Viewport& viewport)
|
|
{
|
|
// If ratio between our projection and viewport aspect ratios is similar to 16:9 / 4:3
|
|
// we have an anamorphic projection.
|
|
static constexpr float IDEAL_RATIO = (16 / 9.f) / (4 / 3.f);
|
|
|
|
const float projection_ar = projection[2] / projection[0];
|
|
const float viewport_ar = viewport.wd / viewport.ht;
|
|
|
|
return std::abs(std::abs(projection_ar / viewport_ar) - IDEAL_RATIO) <
|
|
IDEAL_RATIO * ASPECT_RATIO_SLOP;
|
|
}
|
|
|
|
static bool IsNormalProjection(const Projection::Raw& projection, const Viewport& viewport)
|
|
{
|
|
const float projection_ar = projection[2] / projection[0];
|
|
const float viewport_ar = viewport.wd / viewport.ht;
|
|
return std::abs(std::abs(projection_ar / viewport_ar) - 1) < ASPECT_RATIO_SLOP;
|
|
}
|
|
|
|
VertexManagerBase::VertexManagerBase()
|
|
: m_cpu_vertex_buffer(MAXVBUFFERSIZE), m_cpu_index_buffer(MAXIBUFFERSIZE)
|
|
{
|
|
}
|
|
|
|
VertexManagerBase::~VertexManagerBase() = default;
|
|
|
|
bool VertexManagerBase::Initialize()
|
|
{
|
|
m_index_generator.Init();
|
|
return true;
|
|
}
|
|
|
|
u32 VertexManagerBase::GetRemainingSize() const
|
|
{
|
|
return static_cast<u32>(m_end_buffer_pointer - m_cur_buffer_pointer);
|
|
}
|
|
|
|
void VertexManagerBase::AddIndices(int primitive, u32 num_vertices)
|
|
{
|
|
m_index_generator.AddIndices(primitive, num_vertices);
|
|
}
|
|
|
|
DataReader VertexManagerBase::PrepareForAdditionalData(int primitive, u32 count, u32 stride,
|
|
bool cullall)
|
|
{
|
|
// Flush all EFB pokes. Since the buffer is shared, we can't draw pokes+primitives concurrently.
|
|
g_framebuffer_manager->FlushEFBPokes();
|
|
|
|
// The SSE vertex loader can write up to 4 bytes past the end
|
|
u32 const needed_vertex_bytes = count * stride + 4;
|
|
|
|
// We can't merge different kinds of primitives, so we have to flush here
|
|
PrimitiveType new_primitive_type = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ?
|
|
primitive_from_gx_pr[primitive] :
|
|
primitive_from_gx[primitive];
|
|
if (m_current_primitive_type != new_primitive_type)
|
|
{
|
|
Flush();
|
|
|
|
// Have to update the rasterization state for point/line cull modes.
|
|
m_current_primitive_type = new_primitive_type;
|
|
SetRasterizationStateChanged();
|
|
}
|
|
|
|
// Check for size in buffer, if the buffer gets full, call Flush()
|
|
if (!m_is_flushed &&
|
|
(count > m_index_generator.GetRemainingIndices() || count > GetRemainingIndices(primitive) ||
|
|
needed_vertex_bytes > GetRemainingSize()))
|
|
{
|
|
Flush();
|
|
|
|
if (count > m_index_generator.GetRemainingIndices())
|
|
ERROR_LOG(VIDEO, "Too little remaining index values. Use 32-bit or reset them on flush.");
|
|
if (count > GetRemainingIndices(primitive))
|
|
ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all indices! "
|
|
"Increase MAXIBUFFERSIZE or we need primitive breaking after all.");
|
|
if (needed_vertex_bytes > GetRemainingSize())
|
|
ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all vertices! "
|
|
"Increase MAXVBUFFERSIZE or we need primitive breaking after all.");
|
|
}
|
|
|
|
m_cull_all = cullall;
|
|
|
|
// need to alloc new buffer
|
|
if (m_is_flushed)
|
|
{
|
|
if (cullall)
|
|
{
|
|
// This buffer isn't getting sent to the GPU. Just allocate it on the cpu.
|
|
m_cur_buffer_pointer = m_base_buffer_pointer = m_cpu_vertex_buffer.data();
|
|
m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size();
|
|
m_index_generator.Start(m_cpu_index_buffer.data());
|
|
}
|
|
else
|
|
{
|
|
ResetBuffer(stride);
|
|
}
|
|
|
|
m_is_flushed = false;
|
|
}
|
|
|
|
return DataReader(m_cur_buffer_pointer, m_end_buffer_pointer);
|
|
}
|
|
|
|
void VertexManagerBase::FlushData(u32 count, u32 stride)
|
|
{
|
|
m_cur_buffer_pointer += count * stride;
|
|
}
|
|
|
|
u32 VertexManagerBase::GetRemainingIndices(int primitive) const
|
|
{
|
|
const u32 index_len = MAXIBUFFERSIZE - m_index_generator.GetIndexLen();
|
|
|
|
if (g_Config.backend_info.bSupportsPrimitiveRestart)
|
|
{
|
|
switch (primitive)
|
|
{
|
|
case OpcodeDecoder::GX_DRAW_QUADS:
|
|
case OpcodeDecoder::GX_DRAW_QUADS_2:
|
|
return index_len / 5 * 4;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLES:
|
|
return index_len / 4 * 3;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
|
|
return index_len / 1 - 1;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
|
|
return index_len / 6 * 4 + 1;
|
|
|
|
case OpcodeDecoder::GX_DRAW_LINES:
|
|
return index_len;
|
|
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
|
|
return index_len / 2 + 1;
|
|
|
|
case OpcodeDecoder::GX_DRAW_POINTS:
|
|
return index_len;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (primitive)
|
|
{
|
|
case OpcodeDecoder::GX_DRAW_QUADS:
|
|
case OpcodeDecoder::GX_DRAW_QUADS_2:
|
|
return index_len / 6 * 4;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLES:
|
|
return index_len;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
|
|
return index_len / 3 + 2;
|
|
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
|
|
return index_len / 3 + 2;
|
|
|
|
case OpcodeDecoder::GX_DRAW_LINES:
|
|
return index_len;
|
|
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
|
|
return index_len / 2 + 1;
|
|
|
|
case OpcodeDecoder::GX_DRAW_POINTS:
|
|
return index_len;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto VertexManagerBase::ResetFlushAspectRatioCount() -> FlushStatistics
|
|
{
|
|
const auto result = m_flush_statistics;
|
|
m_flush_statistics = {};
|
|
return result;
|
|
}
|
|
|
|
void VertexManagerBase::ResetBuffer(u32 vertex_stride)
|
|
{
|
|
m_base_buffer_pointer = m_cpu_vertex_buffer.data();
|
|
m_cur_buffer_pointer = m_cpu_vertex_buffer.data();
|
|
m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size();
|
|
m_index_generator.Start(m_cpu_index_buffer.data());
|
|
}
|
|
|
|
void VertexManagerBase::CommitBuffer(u32 num_vertices, u32 vertex_stride, u32 num_indices,
|
|
u32* out_base_vertex, u32* out_base_index)
|
|
{
|
|
*out_base_vertex = 0;
|
|
*out_base_index = 0;
|
|
}
|
|
|
|
void VertexManagerBase::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex)
|
|
{
|
|
// If bounding box is enabled, we need to flush any changes first, then invalidate what we have.
|
|
if (BoundingBox::IsEnabled() && g_ActiveConfig.bBBoxEnable &&
|
|
g_ActiveConfig.backend_info.bSupportsBBox)
|
|
{
|
|
g_renderer->BBoxFlush();
|
|
}
|
|
|
|
g_renderer->DrawIndexed(base_index, num_indices, base_vertex);
|
|
}
|
|
|
|
void VertexManagerBase::UploadUniforms()
|
|
{
|
|
}
|
|
|
|
void VertexManagerBase::InvalidateConstants()
|
|
{
|
|
VertexShaderManager::dirty = true;
|
|
GeometryShaderManager::dirty = true;
|
|
PixelShaderManager::dirty = true;
|
|
}
|
|
|
|
void VertexManagerBase::UploadUtilityUniforms(const void* uniforms, u32 uniforms_size)
|
|
{
|
|
}
|
|
|
|
void VertexManagerBase::UploadUtilityVertices(const void* vertices, u32 vertex_stride,
|
|
u32 num_vertices, const u16* indices, u32 num_indices,
|
|
u32* out_base_vertex, u32* out_base_index)
|
|
{
|
|
// The GX vertex list should be flushed before any utility draws occur.
|
|
ASSERT(m_is_flushed);
|
|
|
|
// Copy into the buffers usually used for GX drawing.
|
|
ResetBuffer(std::max(vertex_stride, 1u));
|
|
if (vertices)
|
|
{
|
|
const u32 copy_size = vertex_stride * num_vertices;
|
|
ASSERT((m_cur_buffer_pointer + copy_size) <= m_end_buffer_pointer);
|
|
std::memcpy(m_cur_buffer_pointer, vertices, copy_size);
|
|
m_cur_buffer_pointer += copy_size;
|
|
}
|
|
if (indices)
|
|
m_index_generator.AddExternalIndices(indices, num_indices, num_vertices);
|
|
|
|
CommitBuffer(num_vertices, vertex_stride, num_indices, out_base_vertex, out_base_index);
|
|
}
|
|
|
|
u32 VertexManagerBase::GetTexelBufferElementSize(TexelBufferFormat buffer_format)
|
|
{
|
|
// R8 - 1, R16 - 2, RGBA8 - 4, R32G32 - 8
|
|
return 1u << static_cast<u32>(buffer_format);
|
|
}
|
|
|
|
bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format,
|
|
u32* out_offset)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format,
|
|
u32* out_offset, const void* palette_data,
|
|
u32 palette_size, TexelBufferFormat palette_format,
|
|
u32* palette_offset)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void VertexManagerBase::LoadTextures()
|
|
{
|
|
BitSet32 usedtextures;
|
|
for (u32 i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
|
|
if (bpmem.tevorders[i / 2].getEnable(i & 1))
|
|
usedtextures[bpmem.tevorders[i / 2].getTexMap(i & 1)] = true;
|
|
|
|
if (bpmem.genMode.numindstages > 0)
|
|
for (unsigned int i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
|
|
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
|
|
usedtextures[bpmem.tevindref.getTexMap(bpmem.tevind[i].bt)] = true;
|
|
|
|
for (unsigned int i : usedtextures)
|
|
g_texture_cache->Load(i);
|
|
|
|
g_texture_cache->BindTextures();
|
|
}
|
|
|
|
void VertexManagerBase::Flush()
|
|
{
|
|
if (m_is_flushed)
|
|
return;
|
|
|
|
m_is_flushed = true;
|
|
|
|
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens ||
|
|
xfmem.numChan.numColorChans != bpmem.genMode.numcolchans)
|
|
{
|
|
ERROR_LOG(VIDEO,
|
|
"Mismatched configuration between XF and BP stages - %u/%u texgens, %u/%u colors. "
|
|
"Skipping draw. Please report on the issue tracker.",
|
|
xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value(),
|
|
xfmem.numChan.numColorChans, bpmem.genMode.numcolchans.Value());
|
|
|
|
// Analytics reporting so we can discover which games have this problem, that way when we
|
|
// eventually simulate the behavior we have test cases for it.
|
|
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens)
|
|
{
|
|
DolphinAnalytics::Instance().ReportGameQuirk(
|
|
GameQuirk::MISMATCHED_GPU_TEXGENS_BETWEEN_XF_AND_BP);
|
|
}
|
|
if (xfmem.numChan.numColorChans != bpmem.genMode.numcolchans)
|
|
{
|
|
DolphinAnalytics::Instance().ReportGameQuirk(
|
|
GameQuirk::MISMATCHED_GPU_COLORS_BETWEEN_XF_AND_BP);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#if defined(_DEBUG) || defined(DEBUGFAST)
|
|
PRIM_LOG("frame%d:\n texgen=%u, numchan=%u, dualtex=%u, ztex=%u, cole=%u, alpe=%u, ze=%u",
|
|
g_ActiveConfig.iSaveTargetId, xfmem.numTexGen.numTexGens, xfmem.numChan.numColorChans,
|
|
xfmem.dualTexTrans.enabled, bpmem.ztex2.op.Value(), bpmem.blendmode.colorupdate.Value(),
|
|
bpmem.blendmode.alphaupdate.Value(), bpmem.zmode.updateenable.Value());
|
|
|
|
for (u32 i = 0; i < xfmem.numChan.numColorChans; ++i)
|
|
{
|
|
LitChannel* ch = &xfmem.color[i];
|
|
PRIM_LOG("colchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i,
|
|
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
|
|
ch->diffusefunc.Value(), ch->attnfunc.Value());
|
|
ch = &xfmem.alpha[i];
|
|
PRIM_LOG("alpchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i,
|
|
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
|
|
ch->diffusefunc.Value(), ch->attnfunc.Value());
|
|
}
|
|
|
|
for (u32 i = 0; i < xfmem.numTexGen.numTexGens; ++i)
|
|
{
|
|
TexMtxInfo tinfo = xfmem.texMtxInfo[i];
|
|
if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP)
|
|
tinfo.hex &= 0x7ff;
|
|
if (tinfo.texgentype != XF_TEXGEN_REGULAR)
|
|
tinfo.projection = 0;
|
|
|
|
PRIM_LOG("txgen%u: proj=%u, input=%u, gentype=%u, srcrow=%u, embsrc=%u, emblght=%u, "
|
|
"postmtx=%u, postnorm=%u",
|
|
i, tinfo.projection.Value(), tinfo.inputform.Value(), tinfo.texgentype.Value(),
|
|
tinfo.sourcerow.Value(), tinfo.embosssourceshift.Value(),
|
|
tinfo.embosslightshift.Value(), xfmem.postMtxInfo[i].index.Value(),
|
|
xfmem.postMtxInfo[i].normalize.Value());
|
|
}
|
|
|
|
PRIM_LOG("pixel: tev=%u, ind=%u, texgen=%u, dstalpha=%u, alphatest=0x%x",
|
|
bpmem.genMode.numtevstages.Value() + 1, bpmem.genMode.numindstages.Value(),
|
|
bpmem.genMode.numtexgens.Value(), bpmem.dstalpha.enable.Value(),
|
|
(bpmem.alpha_test.hex >> 16) & 0xff);
|
|
#endif
|
|
|
|
// Track some stats used elsewhere by the anamorphic widescreen heuristic.
|
|
if (!SConfig::GetInstance().bWii)
|
|
{
|
|
const bool is_perspective = xfmem.projection.type == GX_PERSPECTIVE;
|
|
|
|
auto& counts =
|
|
is_perspective ? m_flush_statistics.perspective : m_flush_statistics.orthographic;
|
|
|
|
if (IsAnamorphicProjection(xfmem.projection.rawProjection, xfmem.viewport))
|
|
{
|
|
++counts.anamorphic_flush_count;
|
|
counts.anamorphic_vertex_count += m_index_generator.GetIndexLen();
|
|
}
|
|
else if (IsNormalProjection(xfmem.projection.rawProjection, xfmem.viewport))
|
|
{
|
|
++counts.normal_flush_count;
|
|
counts.normal_vertex_count += m_index_generator.GetIndexLen();
|
|
}
|
|
else
|
|
{
|
|
++counts.other_flush_count;
|
|
counts.other_vertex_count += m_index_generator.GetIndexLen();
|
|
}
|
|
}
|
|
|
|
// Calculate ZSlope for zfreeze
|
|
VertexShaderManager::SetConstants();
|
|
if (!bpmem.genMode.zfreeze)
|
|
{
|
|
// Must be done after VertexShaderManager::SetConstants()
|
|
CalculateZSlope(VertexLoaderManager::GetCurrentVertexFormat());
|
|
}
|
|
else if (m_zslope.dirty && !m_cull_all) // or apply any dirty ZSlopes
|
|
{
|
|
PixelShaderManager::SetZSlope(m_zslope.dfdx, m_zslope.dfdy, m_zslope.f0);
|
|
m_zslope.dirty = false;
|
|
}
|
|
|
|
if (!m_cull_all)
|
|
{
|
|
// Now the vertices can be flushed to the GPU. Everything following the CommitBuffer() call
|
|
// must be careful to not upload any utility vertices, as the binding will be lost otherwise.
|
|
const u32 num_indices = m_index_generator.GetIndexLen();
|
|
u32 base_vertex, base_index;
|
|
CommitBuffer(m_index_generator.GetNumVerts(),
|
|
VertexLoaderManager::GetCurrentVertexFormat()->GetVertexStride(), num_indices,
|
|
&base_vertex, &base_index);
|
|
|
|
// Texture loading can cause palettes to be applied (-> uniforms -> draws).
|
|
// Palette application does not use vertices, only a full-screen quad, so this is okay.
|
|
// Same with GPU texture decoding, which uses compute shaders.
|
|
LoadTextures();
|
|
|
|
// Now we can upload uniforms, as nothing else will override them.
|
|
GeometryShaderManager::SetConstants();
|
|
PixelShaderManager::SetConstants();
|
|
UploadUniforms();
|
|
|
|
// Update the pipeline, or compile one if needed.
|
|
UpdatePipelineConfig();
|
|
UpdatePipelineObject();
|
|
if (m_current_pipeline_object)
|
|
{
|
|
g_renderer->SetPipeline(m_current_pipeline_object);
|
|
if (PerfQueryBase::ShouldEmulate())
|
|
g_perf_query->EnableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
|
|
|
|
DrawCurrentBatch(base_index, num_indices, base_vertex);
|
|
INCSTAT(g_stats.this_frame.num_draw_calls);
|
|
|
|
if (PerfQueryBase::ShouldEmulate())
|
|
g_perf_query->DisableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
|
|
|
|
OnDraw();
|
|
|
|
// The EFB cache is now potentially stale.
|
|
g_framebuffer_manager->FlagPeekCacheAsOutOfDate();
|
|
}
|
|
}
|
|
|
|
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens)
|
|
{
|
|
ERROR_LOG(VIDEO,
|
|
"xf.numtexgens (%d) does not match bp.numtexgens (%d). Error in command stream.",
|
|
xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value());
|
|
}
|
|
}
|
|
|
|
void VertexManagerBase::DoState(PointerWrap& p)
|
|
{
|
|
if (p.GetMode() == PointerWrap::MODE_READ)
|
|
{
|
|
// Flush old vertex data before loading state.
|
|
Flush();
|
|
|
|
// Clear all caches that touch RAM
|
|
// (? these don't appear to touch any emulation state that gets saved. moved to on load only.)
|
|
VertexLoaderManager::MarkAllDirty();
|
|
}
|
|
|
|
p.Do(m_zslope);
|
|
}
|
|
|
|
void VertexManagerBase::CalculateZSlope(NativeVertexFormat* format)
|
|
{
|
|
float out[12];
|
|
float viewOffset[2] = {xfmem.viewport.xOrig - bpmem.scissorOffset.x * 2,
|
|
xfmem.viewport.yOrig - bpmem.scissorOffset.y * 2};
|
|
|
|
if (m_current_primitive_type != PrimitiveType::Triangles &&
|
|
m_current_primitive_type != PrimitiveType::TriangleStrip)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Global matrix ID.
|
|
u32 mtxIdx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx;
|
|
const PortableVertexDeclaration vert_decl = format->GetVertexDeclaration();
|
|
|
|
// Make sure the buffer contains at least 3 vertices.
|
|
if ((m_cur_buffer_pointer - m_base_buffer_pointer) < (vert_decl.stride * 3))
|
|
return;
|
|
|
|
// Lookup vertices of the last rendered triangle and software-transform them
|
|
// This allows us to determine the depth slope, which will be used if z-freeze
|
|
// is enabled in the following flush.
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
// If this vertex format has per-vertex position matrix IDs, look it up.
|
|
if (vert_decl.posmtx.enable)
|
|
mtxIdx = VertexLoaderManager::position_matrix_index[3 - i];
|
|
|
|
if (vert_decl.position.components == 2)
|
|
VertexLoaderManager::position_cache[2 - i][2] = 0;
|
|
|
|
VertexShaderManager::TransformToClipSpace(&VertexLoaderManager::position_cache[2 - i][0],
|
|
&out[i * 4], mtxIdx);
|
|
|
|
// Transform to Screenspace
|
|
float inv_w = 1.0f / out[3 + i * 4];
|
|
|
|
out[0 + i * 4] = out[0 + i * 4] * inv_w * xfmem.viewport.wd + viewOffset[0];
|
|
out[1 + i * 4] = out[1 + i * 4] * inv_w * xfmem.viewport.ht + viewOffset[1];
|
|
out[2 + i * 4] = out[2 + i * 4] * inv_w * xfmem.viewport.zRange + xfmem.viewport.farZ;
|
|
}
|
|
|
|
float dx31 = out[8] - out[0];
|
|
float dx12 = out[0] - out[4];
|
|
float dy12 = out[1] - out[5];
|
|
float dy31 = out[9] - out[1];
|
|
|
|
float DF31 = out[10] - out[2];
|
|
float DF21 = out[6] - out[2];
|
|
float a = DF31 * -dy12 - DF21 * dy31;
|
|
float b = dx31 * DF21 + dx12 * DF31;
|
|
float c = -dx12 * dy31 - dx31 * -dy12;
|
|
|
|
// Sometimes we process de-generate triangles. Stop any divide by zeros
|
|
if (c == 0)
|
|
return;
|
|
|
|
m_zslope.dfdx = -a / c;
|
|
m_zslope.dfdy = -b / c;
|
|
m_zslope.f0 = out[2] - (out[0] * m_zslope.dfdx + out[1] * m_zslope.dfdy);
|
|
m_zslope.dirty = true;
|
|
}
|
|
|
|
void VertexManagerBase::UpdatePipelineConfig()
|
|
{
|
|
NativeVertexFormat* vertex_format = VertexLoaderManager::GetCurrentVertexFormat();
|
|
if (vertex_format != m_current_pipeline_config.vertex_format)
|
|
{
|
|
m_current_pipeline_config.vertex_format = vertex_format;
|
|
m_current_uber_pipeline_config.vertex_format =
|
|
VertexLoaderManager::GetUberVertexFormat(vertex_format->GetVertexDeclaration());
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
|
|
VertexShaderUid vs_uid = GetVertexShaderUid();
|
|
if (vs_uid != m_current_pipeline_config.vs_uid)
|
|
{
|
|
m_current_pipeline_config.vs_uid = vs_uid;
|
|
m_current_uber_pipeline_config.vs_uid = UberShader::GetVertexShaderUid();
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
|
|
PixelShaderUid ps_uid = GetPixelShaderUid();
|
|
if (ps_uid != m_current_pipeline_config.ps_uid)
|
|
{
|
|
m_current_pipeline_config.ps_uid = ps_uid;
|
|
m_current_uber_pipeline_config.ps_uid = UberShader::GetPixelShaderUid();
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
|
|
GeometryShaderUid gs_uid = GetGeometryShaderUid(GetCurrentPrimitiveType());
|
|
if (gs_uid != m_current_pipeline_config.gs_uid)
|
|
{
|
|
m_current_pipeline_config.gs_uid = gs_uid;
|
|
m_current_uber_pipeline_config.gs_uid = gs_uid;
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
|
|
if (m_rasterization_state_changed)
|
|
{
|
|
m_rasterization_state_changed = false;
|
|
|
|
RasterizationState new_rs = {};
|
|
new_rs.Generate(bpmem, m_current_primitive_type);
|
|
if (new_rs != m_current_pipeline_config.rasterization_state)
|
|
{
|
|
m_current_pipeline_config.rasterization_state = new_rs;
|
|
m_current_uber_pipeline_config.rasterization_state = new_rs;
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
}
|
|
|
|
if (m_depth_state_changed)
|
|
{
|
|
m_depth_state_changed = false;
|
|
|
|
DepthState new_ds = {};
|
|
new_ds.Generate(bpmem);
|
|
if (new_ds != m_current_pipeline_config.depth_state)
|
|
{
|
|
m_current_pipeline_config.depth_state = new_ds;
|
|
m_current_uber_pipeline_config.depth_state = new_ds;
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
}
|
|
|
|
if (m_blending_state_changed)
|
|
{
|
|
m_blending_state_changed = false;
|
|
|
|
BlendingState new_bs = {};
|
|
new_bs.Generate(bpmem);
|
|
if (new_bs != m_current_pipeline_config.blending_state)
|
|
{
|
|
m_current_pipeline_config.blending_state = new_bs;
|
|
m_current_uber_pipeline_config.blending_state = new_bs;
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VertexManagerBase::UpdatePipelineObject()
|
|
{
|
|
if (!m_pipeline_config_changed)
|
|
return;
|
|
|
|
m_current_pipeline_object = nullptr;
|
|
m_pipeline_config_changed = false;
|
|
|
|
switch (g_ActiveConfig.iShaderCompilationMode)
|
|
{
|
|
case ShaderCompilationMode::Synchronous:
|
|
{
|
|
// Ubershaders disabled? Block and compile the specialized shader.
|
|
m_current_pipeline_object = g_shader_cache->GetPipelineForUid(m_current_pipeline_config);
|
|
}
|
|
break;
|
|
|
|
case ShaderCompilationMode::SynchronousUberShaders:
|
|
{
|
|
// Exclusive ubershader mode, always use ubershaders.
|
|
m_current_pipeline_object =
|
|
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
|
|
}
|
|
break;
|
|
|
|
case ShaderCompilationMode::AsynchronousUberShaders:
|
|
case ShaderCompilationMode::AsynchronousSkipRendering:
|
|
{
|
|
// Can we background compile shaders? If so, get the pipeline asynchronously.
|
|
auto res = g_shader_cache->GetPipelineForUidAsync(m_current_pipeline_config);
|
|
if (res)
|
|
{
|
|
// Specialized shaders are ready, prefer these.
|
|
m_current_pipeline_object = *res;
|
|
return;
|
|
}
|
|
|
|
if (g_ActiveConfig.iShaderCompilationMode == ShaderCompilationMode::AsynchronousUberShaders)
|
|
{
|
|
// Specialized shaders not ready, use the ubershaders.
|
|
m_current_pipeline_object =
|
|
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
|
|
}
|
|
else
|
|
{
|
|
// Ensure we try again next draw. Otherwise, if no registers change between frames, the
|
|
// object will never be drawn, even when the shader is ready.
|
|
m_pipeline_config_changed = true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VertexManagerBase::OnDraw()
|
|
{
|
|
m_draw_counter++;
|
|
|
|
// If we didn't have any CPU access last frame, do nothing.
|
|
if (m_scheduled_command_buffer_kicks.empty() || !m_allow_background_execution)
|
|
return;
|
|
|
|
// Check if this draw is scheduled to kick a command buffer.
|
|
// The draw counters will always be sorted so a binary search is possible here.
|
|
if (std::binary_search(m_scheduled_command_buffer_kicks.begin(),
|
|
m_scheduled_command_buffer_kicks.end(), m_draw_counter))
|
|
{
|
|
// Kick a command buffer on the background thread.
|
|
g_renderer->Flush();
|
|
}
|
|
}
|
|
|
|
void VertexManagerBase::OnCPUEFBAccess()
|
|
{
|
|
// Check this isn't another access without any draws inbetween.
|
|
if (!m_cpu_accesses_this_frame.empty() && m_cpu_accesses_this_frame.back() == m_draw_counter)
|
|
return;
|
|
|
|
// Store the current draw counter for scheduling in OnEndFrame.
|
|
m_cpu_accesses_this_frame.emplace_back(m_draw_counter);
|
|
}
|
|
|
|
void VertexManagerBase::OnEFBCopyToRAM()
|
|
{
|
|
// If we're not deferring, try to preempt it next frame.
|
|
if (!g_ActiveConfig.bDeferEFBCopies)
|
|
{
|
|
OnCPUEFBAccess();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, only execute if we have at least 10 objects between us and the last copy.
|
|
const u32 diff = m_draw_counter - m_last_efb_copy_draw_counter;
|
|
m_last_efb_copy_draw_counter = m_draw_counter;
|
|
if (diff < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK)
|
|
return;
|
|
|
|
g_renderer->Flush();
|
|
}
|
|
|
|
void VertexManagerBase::OnEndFrame()
|
|
{
|
|
m_draw_counter = 0;
|
|
m_last_efb_copy_draw_counter = 0;
|
|
m_scheduled_command_buffer_kicks.clear();
|
|
|
|
// If we have no CPU access at all, leave everything in the one command buffer for maximum
|
|
// parallelism between CPU/GPU, at the cost of slightly higher latency.
|
|
if (m_cpu_accesses_this_frame.empty())
|
|
return;
|
|
|
|
// In order to reduce CPU readback latency, we want to kick a command buffer roughly halfway
|
|
// between the draw counters that invoked the readback, or every 250 draws, whichever is smaller.
|
|
if (g_ActiveConfig.iCommandBufferExecuteInterval > 0)
|
|
{
|
|
u32 last_draw_counter = 0;
|
|
u32 interval = static_cast<u32>(g_ActiveConfig.iCommandBufferExecuteInterval);
|
|
for (u32 draw_counter : m_cpu_accesses_this_frame)
|
|
{
|
|
// We don't want to waste executing command buffers for only a few draws, so set a minimum.
|
|
// Leave last_draw_counter as-is, so we get the correct number of draws between submissions.
|
|
u32 draw_count = draw_counter - last_draw_counter;
|
|
if (draw_count < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK)
|
|
continue;
|
|
|
|
if (draw_count <= interval)
|
|
{
|
|
u32 mid_point = draw_count / 2;
|
|
m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + mid_point);
|
|
}
|
|
else
|
|
{
|
|
u32 counter = interval;
|
|
while (counter < draw_count)
|
|
{
|
|
m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + counter);
|
|
counter += interval;
|
|
}
|
|
}
|
|
|
|
last_draw_counter = draw_counter;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
std::ostringstream ss;
|
|
std::for_each(m_cpu_accesses_this_frame.begin(), m_cpu_accesses_this_frame.end(), [&ss](u32 idx) { ss << idx << ","; });
|
|
WARN_LOG(VIDEO, "CPU EFB accesses in last frame: %s", ss.str().c_str());
|
|
}
|
|
{
|
|
std::ostringstream ss;
|
|
std::for_each(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), [&ss](u32 idx) { ss << idx << ","; });
|
|
WARN_LOG(VIDEO, "Scheduled command buffer kicks: %s", ss.str().c_str());
|
|
}
|
|
#endif
|
|
|
|
m_cpu_accesses_this_frame.clear();
|
|
}
|