libretro-dolphin/Source/Core/VideoBackends/Software/Tev.cpp
Jun Su 81f8099cc6 Remove warnings of -Wsign-compare
Cast the variable to the coresponding type.
2020-03-25 07:57:14 +08:00

877 lines
28 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Software/Tev.h"
#include <algorithm>
#include <cmath>
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "VideoBackends/Software/DebugUtil.h"
#include "VideoBackends/Software/EfbInterface.h"
#include "VideoBackends/Software/TextureSampler.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
#ifdef _DEBUG
#define ALLOW_TEV_DUMPS 1
#else
#define ALLOW_TEV_DUMPS 0
#endif
void Tev::Init()
{
FixedConstants[0] = 0;
FixedConstants[1] = 32;
FixedConstants[2] = 64;
FixedConstants[3] = 96;
FixedConstants[4] = 128;
FixedConstants[5] = 159;
FixedConstants[6] = 191;
FixedConstants[7] = 223;
FixedConstants[8] = 255;
for (s16& comp : Zero16)
{
comp = 0;
}
m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C];
m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C];
m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C]; // prev.rgb
m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C];
m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C];
m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C]; // prev.aaa
m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C];
m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C];
m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C]; // c0.rgb
m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C];
m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C];
m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C]; // c0.aaa
m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C];
m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C];
m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C]; // c1.rgb
m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C];
m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C];
m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C]; // c1.aaa
m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C];
m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C];
m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C]; // c2.rgb
m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C];
m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C];
m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C]; // c2.aaa
m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C];
m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C];
m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C]; // tex.rgb
m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C];
m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C];
m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C]; // tex.aaa
m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C];
m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C];
m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C]; // ras.rgb
m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C];
m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C];
m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C]; // ras.rgb
m_ColorInputLUT[12][RED_INP] = &FixedConstants[8];
m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8];
m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8]; // one
m_ColorInputLUT[13][RED_INP] = &FixedConstants[4];
m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4];
m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4]; // half
m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C];
m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C];
m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C]; // konst
m_ColorInputLUT[15][RED_INP] = &FixedConstants[0];
m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0];
m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0]; // zero
m_AlphaInputLUT[0] = &Reg[0][ALP_C]; // prev
m_AlphaInputLUT[1] = &Reg[1][ALP_C]; // c0
m_AlphaInputLUT[2] = &Reg[2][ALP_C]; // c1
m_AlphaInputLUT[3] = &Reg[3][ALP_C]; // c2
m_AlphaInputLUT[4] = &TexColor[ALP_C]; // tex
m_AlphaInputLUT[5] = &RasColor[ALP_C]; // ras
m_AlphaInputLUT[6] = &StageKonst[ALP_C]; // konst
m_AlphaInputLUT[7] = &Zero16[ALP_C]; // zero
for (int comp = 0; comp < 4; comp++)
{
m_KonstLUT[0][comp] = &FixedConstants[8];
m_KonstLUT[1][comp] = &FixedConstants[7];
m_KonstLUT[2][comp] = &FixedConstants[6];
m_KonstLUT[3][comp] = &FixedConstants[5];
m_KonstLUT[4][comp] = &FixedConstants[4];
m_KonstLUT[5][comp] = &FixedConstants[3];
m_KonstLUT[6][comp] = &FixedConstants[2];
m_KonstLUT[7][comp] = &FixedConstants[1];
// These are "invalid" values, not meant to be used. On hardware,
// they all output zero.
for (int i = 8; i < 16; ++i)
{
m_KonstLUT[i][comp] = &FixedConstants[0];
}
if (comp != ALP_C)
{
m_KonstLUT[12][comp] = &KonstantColors[0][comp];
m_KonstLUT[13][comp] = &KonstantColors[1][comp];
m_KonstLUT[14][comp] = &KonstantColors[2][comp];
m_KonstLUT[15][comp] = &KonstantColors[3][comp];
}
m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
}
m_BiasLUT[0] = 0;
m_BiasLUT[1] = 128;
m_BiasLUT[2] = -128;
m_BiasLUT[3] = 0;
m_ScaleLShiftLUT[0] = 0;
m_ScaleLShiftLUT[1] = 1;
m_ScaleLShiftLUT[2] = 2;
m_ScaleLShiftLUT[3] = 0;
m_ScaleRShiftLUT[0] = 0;
m_ScaleRShiftLUT[1] = 0;
m_ScaleRShiftLUT[2] = 0;
m_ScaleRShiftLUT[3] = 1;
}
static inline s16 Clamp255(s16 in)
{
return in > 255 ? 255 : (in < 0 ? 0 : in);
}
static inline s16 Clamp1024(s16 in)
{
return in > 1023 ? 1023 : (in < -1024 ? -1024 : in);
}
void Tev::SetRasColor(int colorChan, int swaptable)
{
switch (colorChan)
{
case 0: // Color0
{
const u8* color = Color[0];
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
swaptable++;
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
}
break;
case 1: // Color1
{
const u8* color = Color[1];
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
swaptable++;
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
}
break;
case 5: // alpha bump
{
for (s16& comp : RasColor)
{
comp = AlphaBump;
}
}
break;
case 6: // alpha bump normalized
{
const u8 normalized = AlphaBump | AlphaBump >> 5;
for (s16& comp : RasColor)
{
comp = normalized;
}
}
break;
default: // zero
{
for (s16& comp : RasColor)
{
comp = 0;
}
}
break;
}
}
void Tev::DrawColorRegular(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
{
for (int i = 0; i < 3; i++)
{
const InputRegType& InputReg = inputs[BLU_C + i];
const u16 c = InputReg.c + (InputReg.c >> 7);
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
temp <<= m_ScaleLShiftLUT[cc.shift];
temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128;
temp >>= 8;
temp = cc.op ? -temp : temp;
s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp;
result = result >> m_ScaleRShiftLUT[cc.shift];
Reg[cc.dest][BLU_C + i] = result;
}
}
void Tev::DrawColorCompare(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
{
for (int i = BLU_C; i <= RED_C; i++)
{
switch ((cc.shift << 1) | cc.op | 8) // encoded compare mode
{
case TEVCMP_R8_GT:
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0);
break;
case TEVCMP_R8_EQ:
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0);
break;
case TEVCMP_GR16_GT:
{
const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
}
break;
case TEVCMP_GR16_EQ:
{
const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
}
break;
case TEVCMP_BGR24_GT:
{
const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
}
break;
case TEVCMP_BGR24_EQ:
{
const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
}
break;
case TEVCMP_RGB8_GT:
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0);
break;
case TEVCMP_RGB8_EQ:
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0);
break;
}
}
}
void Tev::DrawAlphaRegular(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
{
const InputRegType& InputReg = inputs[ALP_C];
const u16 c = InputReg.c + (InputReg.c >> 7);
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
temp <<= m_ScaleLShiftLUT[ac.shift];
temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128;
temp = ac.op ? (-temp >> 8) : (temp >> 8);
s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp;
result = result >> m_ScaleRShiftLUT[ac.shift];
Reg[ac.dest][ALP_C] = result;
}
void Tev::DrawAlphaCompare(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
{
switch ((ac.shift << 1) | ac.op | 8) // encoded compare mode
{
case TEVCMP_R8_GT:
Reg[ac.dest][ALP_C] =
inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0);
break;
case TEVCMP_R8_EQ:
Reg[ac.dest][ALP_C] =
inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0);
break;
case TEVCMP_GR16_GT:
{
const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
}
break;
case TEVCMP_GR16_EQ:
{
const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
}
break;
case TEVCMP_BGR24_GT:
{
const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
}
break;
case TEVCMP_BGR24_EQ:
{
const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
}
break;
case TEVCMP_A8_GT:
Reg[ac.dest][ALP_C] =
inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
break;
case TEVCMP_A8_EQ:
Reg[ac.dest][ALP_C] =
inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
break;
}
}
static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp)
{
switch (comp)
{
case AlphaTest::ALWAYS:
return true;
case AlphaTest::NEVER:
return false;
case AlphaTest::LEQUAL:
return alpha <= ref;
case AlphaTest::LESS:
return alpha < ref;
case AlphaTest::GEQUAL:
return alpha >= ref;
case AlphaTest::GREATER:
return alpha > ref;
case AlphaTest::EQUAL:
return alpha == ref;
case AlphaTest::NEQUAL:
return alpha != ref;
default:
return true;
}
}
static bool TevAlphaTest(int alpha)
{
const bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
const bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);
switch (bpmem.alpha_test.logic)
{
case 0:
return comp0 && comp1; // and
case 1:
return comp0 || comp1; // or
case 2:
return comp0 ^ comp1; // xor
case 3:
return !(comp0 ^ comp1); // xnor
default:
return true;
}
}
static inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
{
switch (wrapMode)
{
case ITW_OFF:
return coord;
case ITW_256:
return (coord & ((256 << 7) - 1));
case ITW_128:
return (coord & ((128 << 7) - 1));
case ITW_64:
return (coord & ((64 << 7) - 1));
case ITW_32:
return (coord & ((32 << 7) - 1));
case ITW_16:
return (coord & ((16 << 7) - 1));
case ITW_0:
return 0;
default:
return 0;
}
}
void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
{
const TevStageIndirect& indirect = bpmem.tevind[stageNum];
const u8* indmap = IndirectTex[indirect.bt];
s32 indcoord[3];
// alpha bump select
switch (indirect.bs)
{
case ITBA_OFF:
AlphaBump = 0;
break;
case ITBA_S:
AlphaBump = indmap[TextureSampler::ALP_SMP];
break;
case ITBA_T:
AlphaBump = indmap[TextureSampler::BLU_SMP];
break;
case ITBA_U:
AlphaBump = indmap[TextureSampler::GRN_SMP];
break;
}
// bias select
const s16 biasValue = indirect.fmt == ITF_8 ? -128 : 1;
s16 bias[3];
bias[0] = indirect.bias & 1 ? biasValue : 0;
bias[1] = indirect.bias & 2 ? biasValue : 0;
bias[2] = indirect.bias & 4 ? biasValue : 0;
// format
switch (indirect.fmt)
{
case ITF_8:
indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
AlphaBump = AlphaBump & 0xf8;
break;
case ITF_5:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
AlphaBump = AlphaBump & 0xe0;
break;
case ITF_4:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
AlphaBump = AlphaBump & 0xf0;
break;
case ITF_3:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
AlphaBump = AlphaBump & 0xf8;
break;
default:
PanicAlert("Tev::Indirect");
return;
}
s32 indtevtrans[2] = {0, 0};
// matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits
// of the result.
const int indmtxid = indirect.mid & 3;
if (indmtxid)
{
const IND_MTX& indmtx = bpmem.indmtx[indmtxid - 1];
const int scale =
((u32)indmtx.col0.s0 << 0) | ((u32)indmtx.col1.s1 << 2) | ((u32)indmtx.col2.s2 << 4);
int shift;
switch (indirect.mid & 12)
{
case 0:
// matrix values are S0.10, output format is S17.7, so divide by 8
shift = (17 - scale);
indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] +
indmtx.col2.me * indcoord[2]) >>
3;
indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] +
indmtx.col2.mf * indcoord[2]) >>
3;
break;
case 4: // s matrix
// s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO:
// Maybe, since s is actually stored as S24, we should divide by 256*64?
shift = (17 - scale);
indtevtrans[0] = s * indcoord[0] / 256;
indtevtrans[1] = t * indcoord[0] / 256;
break;
case 8: // t matrix
shift = (17 - scale);
indtevtrans[0] = s * indcoord[1] / 256;
indtevtrans[1] = t * indcoord[1] / 256;
break;
default:
return;
}
indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
}
if (indirect.fb_addprev)
{
TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
}
else
{
TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
}
}
void Tev::Draw()
{
ASSERT(Position[0] >= 0 && Position[0] < s32(EFB_WIDTH));
ASSERT(Position[1] >= 0 && Position[1] < s32(EFB_HEIGHT));
INCSTAT(g_stats.this_frame.tev_pixels_in);
// initial color values
for (int i = 0; i < 4; i++)
{
Reg[i][RED_C] = PixelShaderManager::constants.colors[i][0];
Reg[i][GRN_C] = PixelShaderManager::constants.colors[i][1];
Reg[i][BLU_C] = PixelShaderManager::constants.colors[i][2];
Reg[i][ALP_C] = PixelShaderManager::constants.colors[i][3];
}
for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
{
const int stageNum2 = stageNum >> 1;
const int stageOdd = stageNum & 1;
const u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
const u32 texmap = bpmem.tevindref.getTexMap(stageNum);
const TEXSCALE& texscale = bpmem.texscale[stageNum2];
const s32 scaleS = stageOdd ? texscale.ss1 : texscale.ss0;
const s32 scaleT = stageOdd ? texscale.ts1 : texscale.ts0;
TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
IndirectLod[stageNum], IndirectLinear[stageNum], texmap,
IndirectTex[stageNum]);
#if ALLOW_TEV_DUMPS
if (g_ActiveConfig.bDumpTevStages)
{
u8 stage[4] = {IndirectTex[stageNum][TextureSampler::ALP_SMP],
IndirectTex[stageNum][TextureSampler::BLU_SMP],
IndirectTex[stageNum][TextureSampler::GRN_SMP], 255};
DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
}
#endif
}
for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
{
const int stageNum2 = stageNum >> 1;
const int stageOdd = stageNum & 1;
const TwoTevStageOrders& order = bpmem.tevorders[stageNum2];
const TevKSel& kSel = bpmem.tevksel[stageNum2];
// stage combiners
const TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stageNum].colorC;
const TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stageNum].alphaC;
const int texcoordSel = order.getTexCoord(stageOdd);
const int texmap = order.getTexMap(stageOdd);
Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);
// sample texture
if (order.getEnable(stageOdd))
{
// RGBA
u8 texel[4];
TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum],
texmap, texel);
#if ALLOW_TEV_DUMPS
if (g_ActiveConfig.bDumpTevTextureFetches)
DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
#endif
int swaptable = ac.tswap * 2;
TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
swaptable++;
TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
}
// set konst for this stage
const int kc = kSel.getKC(stageOdd);
const int ka = kSel.getKA(stageOdd);
StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);
// set color
SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);
// combine inputs
InputRegType inputs[4];
for (int i = 0; i < 3; i++)
{
inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i];
inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i];
inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i];
inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i];
}
inputs[ALP_C].a = *m_AlphaInputLUT[ac.a];
inputs[ALP_C].b = *m_AlphaInputLUT[ac.b];
inputs[ALP_C].c = *m_AlphaInputLUT[ac.c];
inputs[ALP_C].d = *m_AlphaInputLUT[ac.d];
if (cc.bias != 3)
DrawColorRegular(cc, inputs);
else
DrawColorCompare(cc, inputs);
if (cc.clamp)
{
Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
}
else
{
Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
}
if (ac.bias != 3)
DrawAlphaRegular(ac, inputs);
else
DrawAlphaCompare(ac, inputs);
if (ac.clamp)
Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
else
Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);
#if ALLOW_TEV_DUMPS
if (g_ActiveConfig.bDumpTevStages)
{
u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
}
#endif
}
// convert to 8 bits per component
// the results of the last tev stage are put onto the screen,
// regardless of the used destination register - TODO: Verify!
const u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest;
const u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest;
u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C],
(u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]};
if (!TevAlphaTest(output[ALP_C]))
return;
// z texture
if (bpmem.ztex2.op)
{
u32 ztex = bpmem.ztex1.bias;
switch (bpmem.ztex2.type)
{
case 0: // 8 bit
ztex += TexColor[ALP_C];
break;
case 1: // 16 bit
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
break;
case 2: // 24 bit
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
break;
}
if (bpmem.ztex2.op == ZTEXTURE_ADD)
ztex += Position[2];
Position[2] = ztex & 0x00ffffff;
}
// fog
if (bpmem.fog.c_proj_fsel.fsel)
{
float ze;
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF))
const s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
// in addition downscale magnitude and zs to 0.24 bits
ze = (bpmem.fog.GetA() * 16777215.0f) / static_cast<float>(denom);
}
else
{
// orthographic
// ze = a*Zs
// in addition downscale zs to 0.24 bits
ze = bpmem.fog.GetA() * (static_cast<float>(Position[2]) / 16777215.0f);
}
if (bpmem.fogRange.Base.Enabled)
{
// TODO: This is untested and should definitely be checked against real hw.
// - No idea if offset is really normalized against the viewport width or against the
// projection matrix or yet something else
// - scaling of the "k" coefficient isn't clear either.
// First, calculate the offset from the viewport center (normalized to 0..1)
const float offset =
(Position[0] - (static_cast<s32>(bpmem.fogRange.Base.Center.Value()) - 342)) /
static_cast<float>(xfmem.viewport.wd);
// Based on that, choose the index such that points which are far away from the z-axis use the
// 10th "k" value and such that central points use the first value.
float floatindex = 9.f - std::abs(offset) * 9.f;
floatindex = std::clamp(floatindex, 0.f, 9.f); // TODO: This shouldn't be necessary!
// Get the two closest integer indices, look up the corresponding samples
const int indexlower = (int)floatindex;
const int indexupper = indexlower + 1;
// Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog
// is too strong without the factor)
const float klower = bpmem.fogRange.K[indexlower / 2].GetValue(indexlower % 2) * 4.f;
const float kupper = bpmem.fogRange.K[indexupper / 2].GetValue(indexupper % 2) * 4.f;
// linearly interpolate the samples and multiple ze by the resulting adjustment factor
const float factor = indexupper - floatindex;
const float k = klower * factor + kupper * (1.f - factor);
const float x_adjust = sqrt(offset * offset + k * k) / k;
ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind
// GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
}
ze -= bpmem.fog.GetC();
// clamp 0 to 1
float fog = std::clamp(ze, 0.f, 1.f);
switch (bpmem.fog.c_proj_fsel.fsel)
{
case 4: // exp
fog = 1.0f - pow(2.0f, -8.0f * fog);
break;
case 5: // exp2
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
break;
case 6: // backward exp
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog);
break;
case 7: // backward exp2
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog * fog);
break;
}
// lerp from output to fog color
const u32 fogInt = (u32)(fog * 256);
const u32 invFog = 256 - fogInt;
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
}
const bool late_ztest = !bpmem.zcontrol.early_ztest || !g_ActiveConfig.bZComploc;
if (late_ztest && bpmem.zmode.testenable)
{
// TODO: Check against hw if these values get incremented even if depth testing is disabled
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
return;
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
}
BoundingBox::Update(static_cast<u16>(Position[0]), static_cast<u16>(Position[0]),
static_cast<u16>(Position[1]), static_cast<u16>(Position[1]));
#if ALLOW_TEV_DUMPS
if (g_ActiveConfig.bDumpTevStages)
{
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
}
if (g_ActiveConfig.bDumpTevTextureFetches)
{
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
{
TwoTevStageOrders& order = bpmem.tevorders[i >> 1];
if (order.getEnable(i & 1))
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
}
}
#endif
INCSTAT(g_stats.this_frame.tev_pixels_out);
EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT);
EfbInterface::BlendTev(Position[0], Position[1], output);
}
void Tev::SetRegColor(int reg, int comp, s16 color)
{
KonstantColors[reg][comp] = color;
}