libretro-dolphin/Source/Core/VideoBackends/Software/SWVertexLoader.cpp
Lioncash 10f7674651 VideoCommon/IndexGenerator: Eliminate static state
Now that we've extracted all of the stateless functions that can be
hidden, it's time to make the index generator a regular class with
active data members.

This can just be a member that sits within the vertex manager base
class. By deglobalizing the state of the index generator we also get rid
of the wonky dual-initializing that was going on within the OpenGL
backend.

Since the renderer is always initialized before the vertex manager, we
now only call Init() once throughout the execution lifecycle.
2019-12-05 10:49:32 -05:00

218 lines
7.6 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Software/SWVertexLoader.h"
#include <cstddef>
#include <limits>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "VideoBackends/Software/DebugUtil.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/Rasterizer.h"
#include "VideoBackends/Software/SWRenderer.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
SWVertexLoader::SWVertexLoader() = default;
SWVertexLoader::~SWVertexLoader() = default;
void SWVertexLoader::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex)
{
DebugUtil::OnObjectBegin();
u8 primitiveType = 0;
switch (m_current_primitive_type)
{
case PrimitiveType::Points:
primitiveType = OpcodeDecoder::GX_DRAW_POINTS;
break;
case PrimitiveType::Lines:
primitiveType = OpcodeDecoder::GX_DRAW_LINES;
break;
case PrimitiveType::Triangles:
primitiveType = OpcodeDecoder::GX_DRAW_TRIANGLES;
break;
case PrimitiveType::TriangleStrip:
primitiveType = OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP;
break;
}
m_setup_unit.Init(primitiveType);
// set all states with are stored within video sw
for (int i = 0; i < 4; i++)
{
Rasterizer::SetTevReg(i, Tev::RED_C, PixelShaderManager::constants.kcolors[i][0]);
Rasterizer::SetTevReg(i, Tev::GRN_C, PixelShaderManager::constants.kcolors[i][1]);
Rasterizer::SetTevReg(i, Tev::BLU_C, PixelShaderManager::constants.kcolors[i][2]);
Rasterizer::SetTevReg(i, Tev::ALP_C, PixelShaderManager::constants.kcolors[i][3]);
}
for (u32 i = 0; i < m_index_generator.GetIndexLen(); i++)
{
const u16 index = m_cpu_index_buffer[i];
memset(static_cast<void*>(&m_vertex), 0, sizeof(m_vertex));
// Super Mario Sunshine requires those to be zero for those debug boxes.
m_vertex.color = {};
// parse the videocommon format to our own struct format (m_vertex)
SetFormat(g_main_cp_state.last_id, primitiveType);
ParseVertex(VertexLoaderManager::GetCurrentVertexFormat()->GetVertexDeclaration(), index);
// transform this vertex so that it can be used for rasterization (outVertex)
OutputVertexData* outVertex = m_setup_unit.GetVertex();
TransformUnit::TransformPosition(&m_vertex, outVertex);
outVertex->normal = {};
if (VertexLoaderManager::g_current_components & VB_HAS_NRM0)
{
TransformUnit::TransformNormal(
&m_vertex, (VertexLoaderManager::g_current_components & VB_HAS_NRM2) != 0, outVertex);
}
TransformUnit::TransformColor(&m_vertex, outVertex);
TransformUnit::TransformTexCoord(&m_vertex, outVertex, m_tex_gen_special_case);
// assemble and rasterize the primitive
m_setup_unit.SetupVertex();
INCSTAT(g_stats.this_frame.num_vertices_loaded)
}
DebugUtil::OnObjectEnd();
}
void SWVertexLoader::SetFormat(u8 attributeIndex, u8 primitiveType)
{
// matrix index from xf regs or cp memory?
if (xfmem.MatrixIndexA.PosNormalMtxIdx != g_main_cp_state.matrix_index_a.PosNormalMtxIdx ||
xfmem.MatrixIndexA.Tex0MtxIdx != g_main_cp_state.matrix_index_a.Tex0MtxIdx ||
xfmem.MatrixIndexA.Tex1MtxIdx != g_main_cp_state.matrix_index_a.Tex1MtxIdx ||
xfmem.MatrixIndexA.Tex2MtxIdx != g_main_cp_state.matrix_index_a.Tex2MtxIdx ||
xfmem.MatrixIndexA.Tex3MtxIdx != g_main_cp_state.matrix_index_a.Tex3MtxIdx ||
xfmem.MatrixIndexB.Tex4MtxIdx != g_main_cp_state.matrix_index_b.Tex4MtxIdx ||
xfmem.MatrixIndexB.Tex5MtxIdx != g_main_cp_state.matrix_index_b.Tex5MtxIdx ||
xfmem.MatrixIndexB.Tex6MtxIdx != g_main_cp_state.matrix_index_b.Tex6MtxIdx ||
xfmem.MatrixIndexB.Tex7MtxIdx != g_main_cp_state.matrix_index_b.Tex7MtxIdx)
{
ERROR_LOG(VIDEO, "Matrix indices don't match");
}
m_vertex.posMtx = xfmem.MatrixIndexA.PosNormalMtxIdx;
m_vertex.texMtx[0] = xfmem.MatrixIndexA.Tex0MtxIdx;
m_vertex.texMtx[1] = xfmem.MatrixIndexA.Tex1MtxIdx;
m_vertex.texMtx[2] = xfmem.MatrixIndexA.Tex2MtxIdx;
m_vertex.texMtx[3] = xfmem.MatrixIndexA.Tex3MtxIdx;
m_vertex.texMtx[4] = xfmem.MatrixIndexB.Tex4MtxIdx;
m_vertex.texMtx[5] = xfmem.MatrixIndexB.Tex5MtxIdx;
m_vertex.texMtx[6] = xfmem.MatrixIndexB.Tex6MtxIdx;
m_vertex.texMtx[7] = xfmem.MatrixIndexB.Tex7MtxIdx;
// special case if only pos and tex coord 0 and tex coord input is AB11
// http://libogc.devkitpro.org/gx_8h.html#a55a426a3ff796db584302bddd829f002
m_tex_gen_special_case = VertexLoaderManager::g_current_components == VB_HAS_UV0 &&
xfmem.texMtxInfo[0].projection == XF_TEXPROJ_ST;
}
template <typename T, typename I>
static T ReadNormalized(I value)
{
T casted = (T)value;
if (!std::numeric_limits<T>::is_integer && std::numeric_limits<I>::is_integer)
{
// normalize if non-float is converted to a float
casted *= (T)(1.0 / std::numeric_limits<I>::max());
}
return casted;
}
template <typename T, bool swap = false>
static void ReadVertexAttribute(T* dst, DataReader src, const AttributeFormat& format,
int base_component, int components, bool reverse)
{
if (format.enable)
{
src.Skip(format.offset);
src.Skip(base_component * (1 << (format.type >> 1)));
int i;
for (i = 0; i < std::min(format.components - base_component, components); i++)
{
int i_dst = reverse ? components - i - 1 : i;
switch (format.type)
{
case VAR_UNSIGNED_BYTE:
dst[i_dst] = ReadNormalized<T, u8>(src.Read<u8, swap>());
break;
case VAR_BYTE:
dst[i_dst] = ReadNormalized<T, s8>(src.Read<s8, swap>());
break;
case VAR_UNSIGNED_SHORT:
dst[i_dst] = ReadNormalized<T, u16>(src.Read<u16, swap>());
break;
case VAR_SHORT:
dst[i_dst] = ReadNormalized<T, s16>(src.Read<s16, swap>());
break;
case VAR_FLOAT:
dst[i_dst] = ReadNormalized<T, float>(src.Read<float, swap>());
break;
}
ASSERT_MSG(VIDEO, !format.integer || format.type != VAR_FLOAT,
"only non-float values are allowed to be streamed as integer");
}
for (; i < components; i++)
{
int i_dst = reverse ? components - i - 1 : i;
dst[i_dst] = i == 3;
}
}
}
void SWVertexLoader::ParseVertex(const PortableVertexDeclaration& vdec, int index)
{
DataReader src(m_cpu_vertex_buffer.data(),
m_cpu_vertex_buffer.data() + m_cpu_vertex_buffer.size());
src.Skip(index * vdec.stride);
ReadVertexAttribute<float>(&m_vertex.position[0], src, vdec.position, 0, 3, false);
for (std::size_t i = 0; i < m_vertex.normal.size(); i++)
{
ReadVertexAttribute<float>(&m_vertex.normal[i][0], src, vdec.normals[i], 0, 3, false);
}
for (std::size_t i = 0; i < m_vertex.color.size(); i++)
{
ReadVertexAttribute<u8>(m_vertex.color[i].data(), src, vdec.colors[i], 0, 4, true);
}
for (std::size_t i = 0; i < m_vertex.texCoords.size(); i++)
{
ReadVertexAttribute<float>(m_vertex.texCoords[i].data(), src, vdec.texcoords[i], 0, 2, false);
// the texmtr is stored as third component of the texCoord
if (vdec.texcoords[i].components >= 3)
{
ReadVertexAttribute<u8>(&m_vertex.texMtx[i], src, vdec.texcoords[i], 2, 1, false);
}
}
ReadVertexAttribute<u8>(&m_vertex.posMtx, src, vdec.posmtx, 0, 1, false);
}