libretro-dolphin/Externals/liblzma/lz/lz_encoder_mf.c
2020-04-24 15:18:09 +02:00

745 lines
17 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file lz_encoder_mf.c
/// \brief Match finders
///
// Authors: Igor Pavlov
// Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "lz_encoder.h"
#include "lz_encoder_hash.h"
#include "memcmplen.h"
/// \brief Find matches starting from the current byte
///
/// \return The length of the longest match found
extern uint32_t
lzma_mf_find(lzma_mf *mf, uint32_t *count_ptr, lzma_match *matches)
{
// Call the match finder. It returns the number of length-distance
// pairs found.
// FIXME: Minimum count is zero, what _exactly_ is the maximum?
const uint32_t count = mf->find(mf, matches);
// Length of the longest match; assume that no matches were found
// and thus the maximum length is zero.
uint32_t len_best = 0;
if (count > 0) {
#ifndef NDEBUG
// Validate the matches.
for (uint32_t i = 0; i < count; ++i) {
assert(matches[i].len <= mf->nice_len);
assert(matches[i].dist < mf->read_pos);
assert(memcmp(mf_ptr(mf) - 1,
mf_ptr(mf) - matches[i].dist - 2,
matches[i].len) == 0);
}
#endif
// The last used element in the array contains
// the longest match.
len_best = matches[count - 1].len;
// If a match of maximum search length was found, try to
// extend the match to maximum possible length.
if (len_best == mf->nice_len) {
// The limit for the match length is either the
// maximum match length supported by the LZ-based
// encoder or the number of bytes left in the
// dictionary, whichever is smaller.
uint32_t limit = mf_avail(mf) + 1;
if (limit > mf->match_len_max)
limit = mf->match_len_max;
// Pointer to the byte we just ran through
// the match finder.
const uint8_t *p1 = mf_ptr(mf) - 1;
// Pointer to the beginning of the match. We need -1
// here because the match distances are zero based.
const uint8_t *p2 = p1 - matches[count - 1].dist - 1;
len_best = lzma_memcmplen(p1, p2, len_best, limit);
}
}
*count_ptr = count;
// Finally update the read position to indicate that match finder was
// run for this dictionary offset.
++mf->read_ahead;
return len_best;
}
/// Hash value to indicate unused element in the hash. Since we start the
/// positions from dict_size + 1, zero is always too far to qualify
/// as usable match position.
#define EMPTY_HASH_VALUE 0
/// Normalization must be done when lzma_mf.offset + lzma_mf.read_pos
/// reaches MUST_NORMALIZE_POS.
#define MUST_NORMALIZE_POS UINT32_MAX
/// \brief Normalizes hash values
///
/// The hash arrays store positions of match candidates. The positions are
/// relative to an arbitrary offset that is not the same as the absolute
/// offset in the input stream. The relative position of the current byte
/// is lzma_mf.offset + lzma_mf.read_pos. The distances of the matches are
/// the differences of the current read position and the position found from
/// the hash.
///
/// To prevent integer overflows of the offsets stored in the hash arrays,
/// we need to "normalize" the stored values now and then. During the
/// normalization, we drop values that indicate distance greater than the
/// dictionary size, thus making space for new values.
static void
normalize(lzma_mf *mf)
{
assert(mf->read_pos + mf->offset == MUST_NORMALIZE_POS);
// In future we may not want to touch the lowest bits, because there
// may be match finders that use larger resolution than one byte.
const uint32_t subvalue
= (MUST_NORMALIZE_POS - mf->cyclic_size);
// & (~(UINT32_C(1) << 10) - 1);
for (uint32_t i = 0; i < mf->hash_count; ++i) {
// If the distance is greater than the dictionary size,
// we can simply mark the hash element as empty.
if (mf->hash[i] <= subvalue)
mf->hash[i] = EMPTY_HASH_VALUE;
else
mf->hash[i] -= subvalue;
}
for (uint32_t i = 0; i < mf->sons_count; ++i) {
// Do the same for mf->son.
//
// NOTE: There may be uninitialized elements in mf->son.
// Valgrind may complain that the "if" below depends on
// an uninitialized value. In this case it is safe to ignore
// the warning. See also the comments in lz_encoder_init()
// in lz_encoder.c.
if (mf->son[i] <= subvalue)
mf->son[i] = EMPTY_HASH_VALUE;
else
mf->son[i] -= subvalue;
}
// Update offset to match the new locations.
mf->offset -= subvalue;
return;
}
/// Mark the current byte as processed from point of view of the match finder.
static void
move_pos(lzma_mf *mf)
{
if (++mf->cyclic_pos == mf->cyclic_size)
mf->cyclic_pos = 0;
++mf->read_pos;
assert(mf->read_pos <= mf->write_pos);
if (unlikely(mf->read_pos + mf->offset == UINT32_MAX))
normalize(mf);
}
/// When flushing, we cannot run the match finder unless there is nice_len
/// bytes available in the dictionary. Instead, we skip running the match
/// finder (indicating that no match was found), and count how many bytes we
/// have ignored this way.
///
/// When new data is given after the flushing was completed, the match finder
/// is restarted by rewinding mf->read_pos backwards by mf->pending. Then
/// the missed bytes are added to the hash using the match finder's skip
/// function (with small amount of input, it may start using mf->pending
/// again if flushing).
///
/// Due to this rewinding, we don't touch cyclic_pos or test for
/// normalization. It will be done when the match finder's skip function
/// catches up after a flush.
static void
move_pending(lzma_mf *mf)
{
++mf->read_pos;
assert(mf->read_pos <= mf->write_pos);
++mf->pending;
}
/// Calculate len_limit and determine if there is enough input to run
/// the actual match finder code. Sets up "cur" and "pos". This macro
/// is used by all find functions and binary tree skip functions. Hash
/// chain skip function doesn't need len_limit so a simpler code is used
/// in them.
#define header(is_bt, len_min, ret_op) \
uint32_t len_limit = mf_avail(mf); \
if (mf->nice_len <= len_limit) { \
len_limit = mf->nice_len; \
} else if (len_limit < (len_min) \
|| (is_bt && mf->action == LZMA_SYNC_FLUSH)) { \
assert(mf->action != LZMA_RUN); \
move_pending(mf); \
ret_op; \
} \
const uint8_t *cur = mf_ptr(mf); \
const uint32_t pos = mf->read_pos + mf->offset
/// Header for find functions. "return 0" indicates that zero matches
/// were found.
#define header_find(is_bt, len_min) \
header(is_bt, len_min, return 0); \
uint32_t matches_count = 0
/// Header for a loop in a skip function. "continue" tells to skip the rest
/// of the code in the loop.
#define header_skip(is_bt, len_min) \
header(is_bt, len_min, continue)
/// Calls hc_find_func() or bt_find_func() and calculates the total number
/// of matches found. Updates the dictionary position and returns the number
/// of matches found.
#define call_find(func, len_best) \
do { \
matches_count = func(len_limit, pos, cur, cur_match, mf->depth, \
mf->son, mf->cyclic_pos, mf->cyclic_size, \
matches + matches_count, len_best) \
- matches; \
move_pos(mf); \
return matches_count; \
} while (0)
////////////////
// Hash Chain //
////////////////
#if defined(HAVE_MF_HC3) || defined(HAVE_MF_HC4)
///
///
/// \param len_limit Don't look for matches longer than len_limit.
/// \param pos lzma_mf.read_pos + lzma_mf.offset
/// \param cur Pointer to current byte (mf_ptr(mf))
/// \param cur_match Start position of the current match candidate
/// \param depth Maximum length of the hash chain
/// \param son lzma_mf.son (contains the hash chain)
/// \param cyclic_pos
/// \param cyclic_size
/// \param matches Array to hold the matches.
/// \param len_best The length of the longest match found so far.
static lzma_match *
hc_find_func(
const uint32_t len_limit,
const uint32_t pos,
const uint8_t *const cur,
uint32_t cur_match,
uint32_t depth,
uint32_t *const son,
const uint32_t cyclic_pos,
const uint32_t cyclic_size,
lzma_match *matches,
uint32_t len_best)
{
son[cyclic_pos] = cur_match;
while (true) {
const uint32_t delta = pos - cur_match;
if (depth-- == 0 || delta >= cyclic_size)
return matches;
const uint8_t *const pb = cur - delta;
cur_match = son[cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0)];
if (pb[len_best] == cur[len_best] && pb[0] == cur[0]) {
uint32_t len = lzma_memcmplen(pb, cur, 1, len_limit);
if (len_best < len) {
len_best = len;
matches->len = len;
matches->dist = delta - 1;
++matches;
if (len == len_limit)
return matches;
}
}
}
}
#define hc_find(len_best) \
call_find(hc_find_func, len_best)
#define hc_skip() \
do { \
mf->son[mf->cyclic_pos] = cur_match; \
move_pos(mf); \
} while (0)
#endif
#ifdef HAVE_MF_HC3
extern uint32_t
lzma_mf_hc3_find(lzma_mf *mf, lzma_match *matches)
{
header_find(false, 3);
hash_3_calc();
const uint32_t delta2 = pos - mf->hash[hash_2_value];
const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
uint32_t len_best = 2;
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = lzma_memcmplen(cur - delta2, cur,
len_best, len_limit);
matches[0].len = len_best;
matches[0].dist = delta2 - 1;
matches_count = 1;
if (len_best == len_limit) {
hc_skip();
return 1; // matches_count
}
}
hc_find(len_best);
}
extern void
lzma_mf_hc3_skip(lzma_mf *mf, uint32_t amount)
{
do {
if (mf_avail(mf) < 3) {
move_pending(mf);
continue;
}
const uint8_t *cur = mf_ptr(mf);
const uint32_t pos = mf->read_pos + mf->offset;
hash_3_calc();
const uint32_t cur_match
= mf->hash[FIX_3_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
hc_skip();
} while (--amount != 0);
}
#endif
#ifdef HAVE_MF_HC4
extern uint32_t
lzma_mf_hc4_find(lzma_mf *mf, lzma_match *matches)
{
header_find(false, 4);
hash_4_calc();
uint32_t delta2 = pos - mf->hash[hash_2_value];
const uint32_t delta3
= pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value];
const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value];
mf->hash[hash_2_value ] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
uint32_t len_best = 1;
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = 2;
matches[0].len = 2;
matches[0].dist = delta2 - 1;
matches_count = 1;
}
if (delta2 != delta3 && delta3 < mf->cyclic_size
&& *(cur - delta3) == *cur) {
len_best = 3;
matches[matches_count++].dist = delta3 - 1;
delta2 = delta3;
}
if (matches_count != 0) {
len_best = lzma_memcmplen(cur - delta2, cur,
len_best, len_limit);
matches[matches_count - 1].len = len_best;
if (len_best == len_limit) {
hc_skip();
return matches_count;
}
}
if (len_best < 3)
len_best = 3;
hc_find(len_best);
}
extern void
lzma_mf_hc4_skip(lzma_mf *mf, uint32_t amount)
{
do {
if (mf_avail(mf) < 4) {
move_pending(mf);
continue;
}
const uint8_t *cur = mf_ptr(mf);
const uint32_t pos = mf->read_pos + mf->offset;
hash_4_calc();
const uint32_t cur_match
= mf->hash[FIX_4_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
hc_skip();
} while (--amount != 0);
}
#endif
/////////////////
// Binary Tree //
/////////////////
#if defined(HAVE_MF_BT2) || defined(HAVE_MF_BT3) || defined(HAVE_MF_BT4)
static lzma_match *
bt_find_func(
const uint32_t len_limit,
const uint32_t pos,
const uint8_t *const cur,
uint32_t cur_match,
uint32_t depth,
uint32_t *const son,
const uint32_t cyclic_pos,
const uint32_t cyclic_size,
lzma_match *matches,
uint32_t len_best)
{
uint32_t *ptr0 = son + (cyclic_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_pos << 1);
uint32_t len0 = 0;
uint32_t len1 = 0;
while (true) {
const uint32_t delta = pos - cur_match;
if (depth-- == 0 || delta >= cyclic_size) {
*ptr0 = EMPTY_HASH_VALUE;
*ptr1 = EMPTY_HASH_VALUE;
return matches;
}
uint32_t *const pair = son + ((cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0))
<< 1);
const uint8_t *const pb = cur - delta;
uint32_t len = my_min(len0, len1);
if (pb[len] == cur[len]) {
len = lzma_memcmplen(pb, cur, len + 1, len_limit);
if (len_best < len) {
len_best = len;
matches->len = len;
matches->dist = delta - 1;
++matches;
if (len == len_limit) {
*ptr1 = pair[0];
*ptr0 = pair[1];
return matches;
}
}
}
if (pb[len] < cur[len]) {
*ptr1 = cur_match;
ptr1 = pair + 1;
cur_match = *ptr1;
len1 = len;
} else {
*ptr0 = cur_match;
ptr0 = pair;
cur_match = *ptr0;
len0 = len;
}
}
}
static void
bt_skip_func(
const uint32_t len_limit,
const uint32_t pos,
const uint8_t *const cur,
uint32_t cur_match,
uint32_t depth,
uint32_t *const son,
const uint32_t cyclic_pos,
const uint32_t cyclic_size)
{
uint32_t *ptr0 = son + (cyclic_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_pos << 1);
uint32_t len0 = 0;
uint32_t len1 = 0;
while (true) {
const uint32_t delta = pos - cur_match;
if (depth-- == 0 || delta >= cyclic_size) {
*ptr0 = EMPTY_HASH_VALUE;
*ptr1 = EMPTY_HASH_VALUE;
return;
}
uint32_t *pair = son + ((cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0))
<< 1);
const uint8_t *pb = cur - delta;
uint32_t len = my_min(len0, len1);
if (pb[len] == cur[len]) {
len = lzma_memcmplen(pb, cur, len + 1, len_limit);
if (len == len_limit) {
*ptr1 = pair[0];
*ptr0 = pair[1];
return;
}
}
if (pb[len] < cur[len]) {
*ptr1 = cur_match;
ptr1 = pair + 1;
cur_match = *ptr1;
len1 = len;
} else {
*ptr0 = cur_match;
ptr0 = pair;
cur_match = *ptr0;
len0 = len;
}
}
}
#define bt_find(len_best) \
call_find(bt_find_func, len_best)
#define bt_skip() \
do { \
bt_skip_func(len_limit, pos, cur, cur_match, mf->depth, \
mf->son, mf->cyclic_pos, \
mf->cyclic_size); \
move_pos(mf); \
} while (0)
#endif
#ifdef HAVE_MF_BT2
extern uint32_t
lzma_mf_bt2_find(lzma_mf *mf, lzma_match *matches)
{
header_find(true, 2);
hash_2_calc();
const uint32_t cur_match = mf->hash[hash_value];
mf->hash[hash_value] = pos;
bt_find(1);
}
extern void
lzma_mf_bt2_skip(lzma_mf *mf, uint32_t amount)
{
do {
header_skip(true, 2);
hash_2_calc();
const uint32_t cur_match = mf->hash[hash_value];
mf->hash[hash_value] = pos;
bt_skip();
} while (--amount != 0);
}
#endif
#ifdef HAVE_MF_BT3
extern uint32_t
lzma_mf_bt3_find(lzma_mf *mf, lzma_match *matches)
{
header_find(true, 3);
hash_3_calc();
const uint32_t delta2 = pos - mf->hash[hash_2_value];
const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
uint32_t len_best = 2;
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = lzma_memcmplen(
cur, cur - delta2, len_best, len_limit);
matches[0].len = len_best;
matches[0].dist = delta2 - 1;
matches_count = 1;
if (len_best == len_limit) {
bt_skip();
return 1; // matches_count
}
}
bt_find(len_best);
}
extern void
lzma_mf_bt3_skip(lzma_mf *mf, uint32_t amount)
{
do {
header_skip(true, 3);
hash_3_calc();
const uint32_t cur_match
= mf->hash[FIX_3_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
bt_skip();
} while (--amount != 0);
}
#endif
#ifdef HAVE_MF_BT4
extern uint32_t
lzma_mf_bt4_find(lzma_mf *mf, lzma_match *matches)
{
header_find(true, 4);
hash_4_calc();
uint32_t delta2 = pos - mf->hash[hash_2_value];
const uint32_t delta3
= pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value];
const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
uint32_t len_best = 1;
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = 2;
matches[0].len = 2;
matches[0].dist = delta2 - 1;
matches_count = 1;
}
if (delta2 != delta3 && delta3 < mf->cyclic_size
&& *(cur - delta3) == *cur) {
len_best = 3;
matches[matches_count++].dist = delta3 - 1;
delta2 = delta3;
}
if (matches_count != 0) {
len_best = lzma_memcmplen(
cur, cur - delta2, len_best, len_limit);
matches[matches_count - 1].len = len_best;
if (len_best == len_limit) {
bt_skip();
return matches_count;
}
}
if (len_best < 3)
len_best = 3;
bt_find(len_best);
}
extern void
lzma_mf_bt4_skip(lzma_mf *mf, uint32_t amount)
{
do {
header_skip(true, 4);
hash_4_calc();
const uint32_t cur_match
= mf->hash[FIX_4_HASH_SIZE + hash_value];
mf->hash[hash_2_value] = pos;
mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
bt_skip();
} while (--amount != 0);
}
#endif