dolphin/Source/UnitTests/Core/MMIOTest.cpp
2024-08-15 14:20:16 -07:00

141 lines
4.3 KiB
C++

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <gtest/gtest.h>
#include <memory>
#include <unordered_set>
#include "Common/CommonTypes.h"
#include "Core/HW/GPFifo.h"
#include "Core/HW/MMIO.h"
#include "Core/System.h"
// Tests that the UniqueID function returns a "unique enough" identifier
// number: that is, it is unique in the address ranges we care about.
TEST(UniqueID, UniqueEnough)
{
std::unordered_set<u32> ids;
for (u32 i = 0x0C000000; i < 0x0C010000; ++i)
{
u32 unique_id = MMIO::UniqueID(i);
EXPECT_FALSE(ids.contains(unique_id));
ids.insert(unique_id);
}
for (u32 i = 0x0D000000; i < 0x0D010000; ++i)
{
u32 unique_id = MMIO::UniqueID(i);
EXPECT_FALSE(ids.contains(unique_id));
ids.insert(unique_id);
}
}
TEST(IsMMIOAddress, SpecialAddresses)
{
constexpr bool is_wii = true;
// WG Pipe address, should not be handled by MMIO.
EXPECT_FALSE(MMIO::IsMMIOAddress(GPFifo::GATHER_PIPE_PHYSICAL_ADDRESS, is_wii));
// Locked L1 cache allocation.
EXPECT_FALSE(MMIO::IsMMIOAddress(0xE0000000, is_wii));
// Uncached mirror of MEM1, shouldn't be handled by MMIO
EXPECT_FALSE(MMIO::IsMMIOAddress(0xC0000000, is_wii));
// Effective address of an MMIO register; MMIO only deals with physical
// addresses.
EXPECT_FALSE(MMIO::IsMMIOAddress(0xCC0000E0, is_wii));
// And let's check some valid addresses too
EXPECT_TRUE(MMIO::IsMMIOAddress(0x0C0000E0, is_wii)); // GameCube MMIOs
EXPECT_TRUE(MMIO::IsMMIOAddress(0x0D00008C, is_wii)); // Wii MMIOs
EXPECT_TRUE(MMIO::IsMMIOAddress(0x0D800F10, is_wii)); // Mirror of Wii MMIOs
}
class MappingTest : public testing::Test
{
protected:
virtual void SetUp() override
{
m_system = &Core::System::GetInstance();
m_mapping = std::make_unique<MMIO::Mapping>();
}
virtual void TearDown() override
{
m_system = nullptr;
m_mapping.reset();
}
Core::System* m_system = nullptr;
std::unique_ptr<MMIO::Mapping> m_mapping;
};
TEST_F(MappingTest, ReadConstant)
{
m_mapping->Register(0x0C001234, MMIO::Constant<u8>(0x42), MMIO::Nop<u8>());
m_mapping->Register(0x0C001234, MMIO::Constant<u16>(0x1234), MMIO::Nop<u16>());
m_mapping->Register(0x0C001234, MMIO::Constant<u32>(0xdeadbeef), MMIO::Nop<u32>());
u8 val8 = m_mapping->Read<u8>(*m_system, 0x0C001234);
u16 val16 = m_mapping->Read<u16>(*m_system, 0x0C001234);
u32 val32 = m_mapping->Read<u32>(*m_system, 0x0C001234);
EXPECT_EQ(0x42, val8);
EXPECT_EQ(0x1234, val16);
EXPECT_EQ(0xdeadbeef, val32);
}
TEST_F(MappingTest, ReadWriteDirect)
{
u8 target_8 = 0;
u16 target_16 = 0;
u32 target_32 = 0;
m_mapping->Register(0x0C001234, MMIO::DirectRead<u8>(&target_8),
MMIO::DirectWrite<u8>(&target_8));
m_mapping->Register(0x0C001234, MMIO::DirectRead<u16>(&target_16),
MMIO::DirectWrite<u16>(&target_16));
m_mapping->Register(0x0C001234, MMIO::DirectRead<u32>(&target_32),
MMIO::DirectWrite<u32>(&target_32));
for (u32 i = 0; i < 100; ++i)
{
u8 val8 = m_mapping->Read<u8>(*m_system, 0x0C001234);
EXPECT_EQ(i, val8);
u16 val16 = m_mapping->Read<u16>(*m_system, 0x0C001234);
EXPECT_EQ(i, val16);
u32 val32 = m_mapping->Read<u32>(*m_system, 0x0C001234);
EXPECT_EQ(i, val32);
val8 += 1;
m_mapping->Write(*m_system, 0x0C001234, val8);
val16 += 1;
m_mapping->Write(*m_system, 0x0C001234, val16);
val32 += 1;
m_mapping->Write(*m_system, 0x0C001234, val32);
}
}
TEST_F(MappingTest, ReadWriteComplex)
{
bool read_called = false, write_called = false;
m_mapping->Register(0x0C001234, MMIO::ComplexRead<u8>([&read_called](Core::System&, u32 addr) {
EXPECT_EQ(0x0C001234u, addr);
read_called = true;
return 0x12;
}),
MMIO::ComplexWrite<u8>([&write_called](Core::System&, u32 addr, u8 val) {
EXPECT_EQ(0x0C001234u, addr);
EXPECT_EQ(0x34, val);
write_called = true;
}));
u8 val = m_mapping->Read<u8>(*m_system, 0x0C001234);
EXPECT_EQ(0x12, val);
m_mapping->Write(*m_system, 0x0C001234, (u8)0x34);
EXPECT_TRUE(read_called);
EXPECT_TRUE(write_called);
}