dolphin/Source/Core/VideoCommon/PostProcessing.cpp
Lioncash 5aeadb1ef8 PostProcessing: Don't potentially leak memory in BlitFromTexture()
All release() does is relinquish the pointer, rather than free the
memory associated with it.
2024-01-23 13:34:40 -05:00

1068 lines
35 KiB
C++

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/PostProcessing.h"
#include <sstream>
#include <string>
#include <string_view>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/CommonPaths.h"
#include "Common/CommonTypes.h"
#include "Common/FileSearch.h"
#include "Common/FileUtil.h"
#include "Common/IniFile.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractGfx.h"
#include "VideoCommon/AbstractPipeline.h"
#include "VideoCommon/AbstractShader.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/Present.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace VideoCommon
{
static const char s_empty_pixel_shader[] = "void main() { SetOutput(Sample()); }\n";
static const char s_default_pixel_shader_name[] = "default_pre_post_process";
// Keep the highest quality possible to avoid losing quality on subtle gamma conversions.
// RGBA16F should have enough quality even if we store colors in gamma space on it.
static const AbstractTextureFormat s_intermediary_buffer_format = AbstractTextureFormat::RGBA16F;
static bool LoadShaderFromFile(const std::string& shader, const std::string& sub_dir,
std::string& out_code)
{
std::string path = File::GetUserPath(D_SHADERS_IDX) + sub_dir + shader + ".glsl";
if (!File::Exists(path))
{
// Fallback to shared user dir
path = File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir + shader + ".glsl";
}
if (!File::ReadFileToString(path, out_code))
{
out_code = "";
ERROR_LOG_FMT(VIDEO, "Post-processing shader not found: {}", path);
return false;
}
return true;
}
PostProcessingConfiguration::PostProcessingConfiguration() = default;
PostProcessingConfiguration::~PostProcessingConfiguration() = default;
void PostProcessingConfiguration::LoadShader(const std::string& shader)
{
// Load the shader from the configuration if there isn't one sent to us.
m_current_shader = shader;
if (shader.empty())
{
LoadDefaultShader();
return;
}
std::string sub_dir = "";
if (g_Config.stereo_mode == StereoMode::Anaglyph)
{
sub_dir = ANAGLYPH_DIR DIR_SEP;
}
else if (g_Config.stereo_mode == StereoMode::Passive)
{
sub_dir = PASSIVE_DIR DIR_SEP;
}
std::string code;
if (!LoadShaderFromFile(shader, sub_dir, code))
{
LoadDefaultShader();
return;
}
LoadOptions(code);
// Note that this will build the shaders with the custom options values users
// might have set in the settings
LoadOptionsConfiguration();
m_current_shader_code = code;
}
void PostProcessingConfiguration::LoadDefaultShader()
{
m_options.clear();
m_any_options_dirty = false;
m_current_shader = "";
m_current_shader_code = s_empty_pixel_shader;
}
void PostProcessingConfiguration::LoadOptions(const std::string& code)
{
const std::string config_start_delimiter = "[configuration]";
const std::string config_end_delimiter = "[/configuration]";
size_t configuration_start = code.find(config_start_delimiter);
size_t configuration_end = code.find(config_end_delimiter);
m_options.clear();
m_any_options_dirty = true;
if (configuration_start == std::string::npos || configuration_end == std::string::npos)
{
// Issue loading configuration or there isn't one.
return;
}
std::string configuration_string =
code.substr(configuration_start + config_start_delimiter.size(),
configuration_end - configuration_start - config_start_delimiter.size());
std::istringstream in(configuration_string);
struct GLSLStringOption
{
std::string m_type;
std::vector<std::pair<std::string, std::string>> m_options;
};
std::vector<GLSLStringOption> option_strings;
GLSLStringOption* current_strings = nullptr;
while (!in.eof())
{
std::string line_str;
if (std::getline(in, line_str))
{
std::string_view line = line_str;
#ifndef _WIN32
// Check for CRLF eol and convert it to LF
if (!line.empty() && line.at(line.size() - 1) == '\r')
line.remove_suffix(1);
#endif
if (!line.empty())
{
if (line[0] == '[')
{
size_t endpos = line.find("]");
if (endpos != std::string::npos)
{
// New section!
std::string_view sub = line.substr(1, endpos - 1);
option_strings.push_back({std::string(sub)});
current_strings = &option_strings.back();
}
}
else
{
if (current_strings)
{
std::string key, value;
Common::IniFile::ParseLine(line, &key, &value);
if (!(key.empty() && value.empty()))
current_strings->m_options.emplace_back(key, value);
}
}
}
}
}
for (const auto& it : option_strings)
{
ConfigurationOption option;
option.m_dirty = true;
if (it.m_type == "OptionBool")
option.m_type = ConfigurationOption::OptionType::Bool;
else if (it.m_type == "OptionRangeFloat")
option.m_type = ConfigurationOption::OptionType::Float;
else if (it.m_type == "OptionRangeInteger")
option.m_type = ConfigurationOption::OptionType::Integer;
for (const auto& string_option : it.m_options)
{
if (string_option.first == "GUIName")
{
option.m_gui_name = string_option.second;
}
else if (string_option.first == "OptionName")
{
option.m_option_name = string_option.second;
}
else if (string_option.first == "DependentOption")
{
option.m_dependent_option = string_option.second;
}
else if (string_option.first == "MinValue" || string_option.first == "MaxValue" ||
string_option.first == "DefaultValue" || string_option.first == "StepAmount")
{
std::vector<s32>* output_integer = nullptr;
std::vector<float>* output_float = nullptr;
if (string_option.first == "MinValue")
{
output_integer = &option.m_integer_min_values;
output_float = &option.m_float_min_values;
}
else if (string_option.first == "MaxValue")
{
output_integer = &option.m_integer_max_values;
output_float = &option.m_float_max_values;
}
else if (string_option.first == "DefaultValue")
{
output_integer = &option.m_integer_values;
output_float = &option.m_float_values;
}
else if (string_option.first == "StepAmount")
{
output_integer = &option.m_integer_step_values;
output_float = &option.m_float_step_values;
}
if (option.m_type == ConfigurationOption::OptionType::Bool)
{
TryParse(string_option.second, &option.m_bool_value);
}
else if (option.m_type == ConfigurationOption::OptionType::Integer)
{
TryParseVector(string_option.second, output_integer);
if (output_integer->size() > 4)
output_integer->erase(output_integer->begin() + 4, output_integer->end());
}
else if (option.m_type == ConfigurationOption::OptionType::Float)
{
TryParseVector(string_option.second, output_float);
if (output_float->size() > 4)
output_float->erase(output_float->begin() + 4, output_float->end());
}
}
}
m_options[option.m_option_name] = option;
}
}
void PostProcessingConfiguration::LoadOptionsConfiguration()
{
Common::IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
// We already expect all the options to be marked as "dirty" when we reach here
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::Bool:
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &it.second.m_bool_value,
it.second.m_bool_value);
break;
case ConfigurationOption::OptionType::Integer:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
if (!value.empty())
{
auto integer_values = it.second.m_integer_values;
if (TryParseVector(value, &integer_values))
{
it.second.m_integer_values = integer_values;
}
}
}
break;
case ConfigurationOption::OptionType::Float:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
if (!value.empty())
{
auto float_values = it.second.m_float_values;
if (TryParseVector(value, &float_values))
{
it.second.m_float_values = float_values;
}
}
}
break;
}
}
}
void PostProcessingConfiguration::SaveOptionsConfiguration()
{
Common::IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::Bool:
{
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, it.second.m_bool_value);
}
break;
case ConfigurationOption::OptionType::Integer:
{
std::string value;
for (size_t i = 0; i < it.second.m_integer_values.size(); ++i)
{
value += fmt::format("{}{}", it.second.m_integer_values[i],
i == (it.second.m_integer_values.size() - 1) ? "" : ", ");
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value);
}
break;
case ConfigurationOption::OptionType::Float:
{
std::ostringstream value;
value.imbue(std::locale("C"));
for (size_t i = 0; i < it.second.m_float_values.size(); ++i)
{
value << it.second.m_float_values[i];
if (i != (it.second.m_float_values.size() - 1))
value << ", ";
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value.str());
}
break;
}
}
ini.Save(File::GetUserPath(F_DOLPHINCONFIG_IDX));
}
void PostProcessingConfiguration::SetOptionf(const std::string& option, int index, float value)
{
auto it = m_options.find(option);
it->second.m_float_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptioni(const std::string& option, int index, s32 value)
{
auto it = m_options.find(option);
it->second.m_integer_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptionb(const std::string& option, bool value)
{
auto it = m_options.find(option);
it->second.m_bool_value = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
PostProcessing::PostProcessing()
{
m_timer.Start();
}
PostProcessing::~PostProcessing()
{
m_timer.Stop();
}
static std::vector<std::string> GetShaders(const std::string& sub_dir = "")
{
std::vector<std::string> paths =
Common::DoFileSearch({File::GetUserPath(D_SHADERS_IDX) + sub_dir,
File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir},
{".glsl"});
std::vector<std::string> result;
for (std::string path : paths)
{
std::string name;
SplitPath(path, nullptr, &name, nullptr);
if (name == s_default_pixel_shader_name)
continue;
result.push_back(name);
}
return result;
}
std::vector<std::string> PostProcessing::GetShaderList()
{
return GetShaders();
}
std::vector<std::string> PostProcessing::GetAnaglyphShaderList()
{
return GetShaders(ANAGLYPH_DIR DIR_SEP);
}
std::vector<std::string> PostProcessing::GetPassiveShaderList()
{
return GetShaders(PASSIVE_DIR DIR_SEP);
}
bool PostProcessing::Initialize(AbstractTextureFormat format)
{
m_framebuffer_format = format;
// CompilePixelShader() must be run first if configuration options are used.
// Otherwise the UBO has a different member list between vertex and pixel
// shaders, which is a link error on some backends.
if (!CompilePixelShader() || !CompileVertexShader() || !CompilePipeline())
return false;
return true;
}
void PostProcessing::RecompileShader()
{
// Note: for simplicity we already recompile all the shaders
// and pipelines even if there might not be need to.
m_default_pipeline.reset();
m_pipeline.reset();
m_default_pixel_shader.reset();
m_pixel_shader.reset();
m_default_vertex_shader.reset();
m_vertex_shader.reset();
if (!CompilePixelShader())
return;
if (!CompileVertexShader())
return;
CompilePipeline();
}
void PostProcessing::RecompilePipeline()
{
m_default_pipeline.reset();
m_pipeline.reset();
CompilePipeline();
}
bool PostProcessing::IsColorCorrectionActive() const
{
// We can skip the color correction pass if none of these settings are on
// (it might have still helped with gamma correct sampling, but it's not worth running it).
return g_ActiveConfig.color_correction.bCorrectColorSpace ||
g_ActiveConfig.color_correction.bCorrectGamma ||
m_framebuffer_format == AbstractTextureFormat::RGBA16F;
}
bool PostProcessing::NeedsIntermediaryBuffer() const
{
// If we have no user selected post process shader,
// there's no point in having an intermediary buffer doing nothing.
return !m_config.GetShader().empty();
}
void PostProcessing::BlitFromTexture(const MathUtil::Rectangle<int>& dst,
const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer)
{
if (g_gfx->GetCurrentFramebuffer()->GetColorFormat() != m_framebuffer_format)
{
m_framebuffer_format = g_gfx->GetCurrentFramebuffer()->GetColorFormat();
RecompilePipeline();
}
// By default all source layers will be copied into the respective target layers
const bool copy_all_layers = src_layer < 0;
src_layer = std::max(src_layer, 0);
MathUtil::Rectangle<int> src_rect = src;
g_gfx->SetSamplerState(0, RenderState::GetLinearSamplerState());
g_gfx->SetSamplerState(1, RenderState::GetPointSamplerState());
g_gfx->SetTexture(0, src_tex);
g_gfx->SetTexture(1, src_tex);
const bool needs_color_correction = IsColorCorrectionActive();
// Rely on the default (bi)linear sampler with the default mode
// (it might not be gamma corrected).
const bool needs_resampling =
g_ActiveConfig.output_resampling_mode > OutputResamplingMode::Default;
const bool needs_intermediary_buffer = NeedsIntermediaryBuffer();
const bool needs_default_pipeline = needs_color_correction || needs_resampling;
const AbstractPipeline* final_pipeline = m_pipeline.get();
std::vector<u8>* uniform_staging_buffer = &m_default_uniform_staging_buffer;
bool default_uniform_staging_buffer = true;
const MathUtil::Rectangle<int> present_rect = g_presenter->GetTargetRectangle();
// Intermediary pass.
// We draw to a high quality intermediary texture for a couple reasons:
// -Consistently do high quality gamma corrected resampling (upscaling/downscaling)
// -Keep quality for gamma and gamut conversions, and HDR output
// (low bit depths lose too much quality with gamma conversions)
// -Keep the post process phase in linear space, to better operate with colors
if (m_default_pipeline && needs_default_pipeline && needs_intermediary_buffer)
{
AbstractFramebuffer* const previous_framebuffer = g_gfx->GetCurrentFramebuffer();
// We keep the min number of layers as the render target,
// as in case of OpenGL, the source FBX will have two layers,
// but we will render onto two separate frame buffers (one by one),
// so it would be a waste to allocate two layers (see "bUsesExplictQuadBuffering").
const u32 target_layers = copy_all_layers ? src_tex->GetLayers() : 1;
const u32 target_width =
needs_resampling ? present_rect.GetWidth() : static_cast<u32>(src_rect.GetWidth());
const u32 target_height =
needs_resampling ? present_rect.GetHeight() : static_cast<u32>(src_rect.GetHeight());
if (!m_intermediary_frame_buffer || !m_intermediary_color_texture ||
m_intermediary_color_texture->GetWidth() != target_width ||
m_intermediary_color_texture->GetHeight() != target_height ||
m_intermediary_color_texture->GetLayers() != target_layers)
{
const TextureConfig intermediary_color_texture_config(
target_width, target_height, 1, target_layers, src_tex->GetSamples(),
s_intermediary_buffer_format, AbstractTextureFlag_RenderTarget,
AbstractTextureType::Texture_2DArray);
m_intermediary_color_texture = g_gfx->CreateTexture(intermediary_color_texture_config,
"Intermediary post process texture");
m_intermediary_frame_buffer =
g_gfx->CreateFramebuffer(m_intermediary_color_texture.get(), nullptr);
}
g_gfx->SetFramebuffer(m_intermediary_frame_buffer.get());
FillUniformBuffer(src_rect, src_tex, src_layer, g_gfx->GetCurrentFramebuffer()->GetRect(),
present_rect, uniform_staging_buffer->data(), !default_uniform_staging_buffer,
true);
g_vertex_manager->UploadUtilityUniforms(uniform_staging_buffer->data(),
static_cast<u32>(uniform_staging_buffer->size()));
g_gfx->SetViewportAndScissor(g_gfx->ConvertFramebufferRectangle(
m_intermediary_color_texture->GetRect(), m_intermediary_frame_buffer.get()));
g_gfx->SetPipeline(m_default_pipeline.get());
g_gfx->Draw(0, 3);
g_gfx->SetFramebuffer(previous_framebuffer);
src_rect = m_intermediary_color_texture->GetRect();
src_tex = m_intermediary_color_texture.get();
g_gfx->SetTexture(0, src_tex);
g_gfx->SetTexture(1, src_tex);
// The "m_intermediary_color_texture" has already copied
// from the specified source layer onto its first one.
// If we query for a layer that the source texture doesn't have,
// it will fall back on the first one anyway.
src_layer = 0;
uniform_staging_buffer = &m_uniform_staging_buffer;
default_uniform_staging_buffer = false;
}
else
{
// If we have no custom user shader selected, and color correction
// is active, directly run the fixed pipeline shader instead of
// doing two passes, with the second one doing nothing useful.
if (m_default_pipeline && needs_default_pipeline)
{
final_pipeline = m_default_pipeline.get();
}
else
{
uniform_staging_buffer = &m_uniform_staging_buffer;
default_uniform_staging_buffer = false;
}
m_intermediary_frame_buffer.reset();
m_intermediary_color_texture.reset();
}
// TODO: ideally we'd do the user selected post process pass in the intermediary buffer in linear
// space (instead of gamma space), so the shaders could act more accurately (and sample in linear
// space), though that would break the look of some of current post processes we have, and thus is
// better avoided for now.
// Final pass, either a user selected shader or the default (fixed) shader.
if (final_pipeline)
{
FillUniformBuffer(src_rect, src_tex, src_layer, g_gfx->GetCurrentFramebuffer()->GetRect(),
present_rect, uniform_staging_buffer->data(), !default_uniform_staging_buffer,
false);
g_vertex_manager->UploadUtilityUniforms(uniform_staging_buffer->data(),
static_cast<u32>(uniform_staging_buffer->size()));
g_gfx->SetViewportAndScissor(
g_gfx->ConvertFramebufferRectangle(dst, g_gfx->GetCurrentFramebuffer()));
g_gfx->SetPipeline(final_pipeline);
g_gfx->Draw(0, 3);
}
}
std::string PostProcessing::GetUniformBufferHeader(bool user_post_process) const
{
std::ostringstream ss;
u32 unused_counter = 1;
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
// Builtin uniforms:
ss << " float4 resolution;\n"; // Source resolution
ss << " float4 target_resolution;\n";
ss << " float4 window_resolution;\n";
// How many horizontal and vertical stereo views do we have? (set to 1 when we use layers instead)
ss << " int2 stereo_views;\n";
ss << " float4 src_rect;\n";
// The first (but not necessarily only) source layer we target
ss << " int src_layer;\n";
ss << " uint time;\n";
ss << " int graphics_api;\n";
// If true, it's an intermediary buffer (including the first), if false, it's the final one
ss << " int intermediary_buffer;\n";
ss << " int resampling_method;\n";
ss << " int correct_color_space;\n";
ss << " int game_color_space;\n";
ss << " int correct_gamma;\n";
ss << " float game_gamma;\n";
ss << " int sdr_display_gamma_sRGB;\n";
ss << " float sdr_display_custom_gamma;\n";
ss << " int linear_space_output;\n";
ss << " int hdr_output;\n";
ss << " float hdr_paper_white_nits;\n";
ss << " float hdr_sdr_white_nits;\n";
if (user_post_process)
{
ss << "\n";
// Custom options/uniforms
for (const auto& it : m_config.GetOptions())
{
if (it.second.m_type == PostProcessingConfiguration::ConfigurationOption::OptionType::Bool)
{
ss << fmt::format(" int {};\n", it.first);
for (u32 i = 0; i < 3; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::Integer)
{
u32 count = static_cast<u32>(it.second.m_integer_values.size());
if (count == 1)
ss << fmt::format(" int {};\n", it.first);
else
ss << fmt::format(" int{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::Float)
{
u32 count = static_cast<u32>(it.second.m_float_values.size());
if (count == 1)
ss << fmt::format(" float {};\n", it.first);
else
ss << fmt::format(" float{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " float ubo_align_" << unused_counter++ << "_;\n";
}
}
}
ss << "};\n\n";
return ss.str();
}
std::string PostProcessing::GetHeader(bool user_post_process) const
{
std::ostringstream ss;
ss << GetUniformBufferHeader(user_post_process);
ss << "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n";
ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n";
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) in VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
}
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
ss << R"(
float4 Sample() { return texture(samp0, v_tex0); }
float4 SampleLocation(float2 location) { return texture(samp0, float3(location, float(v_tex0.z))); }
float4 SampleLayer(int layer) { return texture(samp0, float3(v_tex0.xy, float(layer))); }
#define SampleOffset(offset) textureOffset(samp0, v_tex0, offset)
float2 GetTargetResolution()
{
return target_resolution.xy;
}
float2 GetInvTargetResolution()
{
return target_resolution.zw;
}
float2 GetWindowResolution()
{
return window_resolution.xy;
}
float2 GetInvWindowResolution()
{
return window_resolution.zw;
}
float2 GetResolution()
{
return resolution.xy;
}
float2 GetInvResolution()
{
return resolution.zw;
}
float2 GetCoordinates()
{
return v_tex0.xy;
}
float GetLayer()
{
return v_tex0.z;
}
uint GetTime()
{
return time;
}
void SetOutput(float4 color)
{
ocol0 = color;
}
#define GetOption(x) (x)
#define OptionEnabled(x) ((x) != 0)
#define OptionDisabled(x) ((x) == 0)
)";
return ss.str();
}
std::string PostProcessing::GetFooter() const
{
return {};
}
static std::string GetVertexShaderBody()
{
std::ostringstream ss;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) out VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) out float3 v_tex0;\n";
}
ss << "#define id gl_VertexID\n";
ss << "#define opos gl_Position\n";
ss << "void main() {\n";
ss << " v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n";
ss << " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n";
ss << " v_tex0 = float3(src_rect.xy + (src_rect.zw * v_tex0.xy), float(src_layer));\n";
// Vulkan Y needs to be inverted on every pass
if (g_ActiveConfig.backend_info.api_type == APIType::Vulkan)
{
ss << " opos.y = -opos.y;\n";
}
// OpenGL Y needs to be inverted in all passes except the last one
else if (g_ActiveConfig.backend_info.api_type == APIType::OpenGL)
{
ss << " if (intermediary_buffer != 0)\n";
ss << " opos.y = -opos.y;\n";
}
ss << "}\n";
return ss.str();
}
bool PostProcessing::CompileVertexShader()
{
std::ostringstream ss_default;
ss_default << GetUniformBufferHeader(false);
ss_default << GetVertexShaderBody();
m_default_vertex_shader = g_gfx->CreateShaderFromSource(ShaderStage::Vertex, ss_default.str(),
"Default post-processing vertex shader");
std::ostringstream ss;
ss << GetUniformBufferHeader(true);
ss << GetVertexShaderBody();
m_vertex_shader =
g_gfx->CreateShaderFromSource(ShaderStage::Vertex, ss.str(), "Post-processing vertex shader");
if (!m_default_vertex_shader || !m_vertex_shader)
{
PanicAlertFmt("Failed to compile post-processing vertex shader");
m_default_vertex_shader.reset();
m_vertex_shader.reset();
return false;
}
return true;
}
struct BuiltinUniforms
{
// bools need to be represented as "s32"
std::array<float, 4> source_resolution;
std::array<float, 4> target_resolution;
std::array<float, 4> window_resolution;
std::array<float, 4> stereo_views;
std::array<float, 4> src_rect;
s32 src_layer;
u32 time;
s32 graphics_api;
s32 intermediary_buffer;
s32 resampling_method;
s32 correct_color_space;
s32 game_color_space;
s32 correct_gamma;
float game_gamma;
s32 sdr_display_gamma_sRGB;
float sdr_display_custom_gamma;
s32 linear_space_output;
s32 hdr_output;
float hdr_paper_white_nits;
float hdr_sdr_white_nits;
};
size_t PostProcessing::CalculateUniformsSize(bool user_post_process) const
{
// Allocate a vec4 for each uniform to simplify allocation.
return sizeof(BuiltinUniforms) +
(user_post_process ? m_config.GetOptions().size() : 0) * sizeof(float) * 4;
}
void PostProcessing::FillUniformBuffer(const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer,
const MathUtil::Rectangle<int>& dst,
const MathUtil::Rectangle<int>& wnd, u8* buffer,
bool user_post_process, bool intermediary_buffer)
{
const float rcp_src_width = 1.0f / src_tex->GetWidth();
const float rcp_src_height = 1.0f / src_tex->GetHeight();
BuiltinUniforms builtin_uniforms;
builtin_uniforms.source_resolution = {static_cast<float>(src_tex->GetWidth()),
static_cast<float>(src_tex->GetHeight()), rcp_src_width,
rcp_src_height};
builtin_uniforms.target_resolution = {
static_cast<float>(dst.GetWidth()), static_cast<float>(dst.GetHeight()),
1.0f / static_cast<float>(dst.GetWidth()), 1.0f / static_cast<float>(dst.GetHeight())};
builtin_uniforms.window_resolution = {
static_cast<float>(wnd.GetWidth()), static_cast<float>(wnd.GetHeight()),
1.0f / static_cast<float>(wnd.GetWidth()), 1.0f / static_cast<float>(wnd.GetHeight())};
builtin_uniforms.src_rect = {static_cast<float>(src.left) * rcp_src_width,
static_cast<float>(src.top) * rcp_src_height,
static_cast<float>(src.GetWidth()) * rcp_src_width,
static_cast<float>(src.GetHeight()) * rcp_src_height};
builtin_uniforms.src_layer = static_cast<s32>(src_layer);
builtin_uniforms.time = static_cast<u32>(m_timer.ElapsedMs());
builtin_uniforms.graphics_api = static_cast<s32>(g_ActiveConfig.backend_info.api_type);
builtin_uniforms.intermediary_buffer = static_cast<s32>(intermediary_buffer);
builtin_uniforms.resampling_method = static_cast<s32>(g_ActiveConfig.output_resampling_mode);
// Color correction related uniforms.
// These are mainly used by the "m_default_pixel_shader",
// but should also be accessible to all other shaders.
builtin_uniforms.correct_color_space = g_ActiveConfig.color_correction.bCorrectColorSpace;
builtin_uniforms.game_color_space =
static_cast<int>(g_ActiveConfig.color_correction.game_color_space);
builtin_uniforms.correct_gamma = g_ActiveConfig.color_correction.bCorrectGamma;
builtin_uniforms.game_gamma = g_ActiveConfig.color_correction.fGameGamma;
builtin_uniforms.sdr_display_gamma_sRGB = g_ActiveConfig.color_correction.bSDRDisplayGammaSRGB;
builtin_uniforms.sdr_display_custom_gamma =
g_ActiveConfig.color_correction.fSDRDisplayCustomGamma;
// scRGB (RGBA16F) expects linear values as opposed to sRGB gamma
builtin_uniforms.linear_space_output = m_framebuffer_format == AbstractTextureFormat::RGBA16F;
// Implies ouput values can be beyond the 0-1 range
builtin_uniforms.hdr_output = m_framebuffer_format == AbstractTextureFormat::RGBA16F;
builtin_uniforms.hdr_paper_white_nits = g_ActiveConfig.color_correction.fHDRPaperWhiteNits;
// A value of 1 1 1 usually matches 80 nits in HDR
builtin_uniforms.hdr_sdr_white_nits = 80.f;
std::memcpy(buffer, &builtin_uniforms, sizeof(builtin_uniforms));
buffer += sizeof(builtin_uniforms);
// Don't include the custom pp shader options if they are not necessary,
// having mismatching uniforms between different shaders can cause issues on some backends
if (!user_post_process)
return;
for (auto& it : m_config.GetOptions())
{
union
{
u32 as_bool[4];
s32 as_int[4];
float as_float[4];
} value = {};
switch (it.second.m_type)
{
case PostProcessingConfiguration::ConfigurationOption::OptionType::Bool:
value.as_bool[0] = it.second.m_bool_value ? 1 : 0;
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::Integer:
ASSERT(it.second.m_integer_values.size() <= 4);
std::copy_n(it.second.m_integer_values.begin(), it.second.m_integer_values.size(),
value.as_int);
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::Float:
ASSERT(it.second.m_float_values.size() <= 4);
std::copy_n(it.second.m_float_values.begin(), it.second.m_float_values.size(),
value.as_float);
break;
}
it.second.m_dirty = false;
std::memcpy(buffer, &value, sizeof(value));
buffer += sizeof(value);
}
m_config.SetDirty(false);
}
bool PostProcessing::CompilePixelShader()
{
m_default_pixel_shader.reset();
m_pixel_shader.reset();
// Generate GLSL and compile the new shaders:
std::string default_pixel_shader_code;
if (LoadShaderFromFile(s_default_pixel_shader_name, "", default_pixel_shader_code))
{
m_default_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(false) + default_pixel_shader_code + GetFooter(),
"Default post-processing pixel shader");
// We continue even if all of this failed, it doesn't matter
m_default_uniform_staging_buffer.resize(CalculateUniformsSize(false));
}
else
{
m_default_uniform_staging_buffer.resize(0);
}
m_config.LoadShader(g_ActiveConfig.sPostProcessingShader);
m_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(true) + m_config.GetShaderCode() + GetFooter(),
fmt::format("User post-processing pixel shader: {}", m_config.GetShader()));
if (!m_pixel_shader)
{
PanicAlertFmt("Failed to compile user post-processing shader {}", m_config.GetShader());
// Use default shader.
m_config.LoadDefaultShader();
m_pixel_shader = g_gfx->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader(true) + m_config.GetShaderCode() + GetFooter(),
"Default user post-processing pixel shader");
if (!m_pixel_shader)
{
m_uniform_staging_buffer.resize(0);
return false;
}
}
m_uniform_staging_buffer.resize(CalculateUniformsSize(true));
return true;
}
static bool UseGeometryShaderForPostProcess(bool is_intermediary_buffer)
{
// We only return true on stereo modes that need to copy
// both source texture layers into the target texture layers.
// Any other case is handled manually with multiple copies, thus
// it doesn't need a geom shader.
switch (g_ActiveConfig.stereo_mode)
{
case StereoMode::QuadBuffer:
return !g_ActiveConfig.backend_info.bUsesExplictQuadBuffering;
case StereoMode::Anaglyph:
case StereoMode::Passive:
return is_intermediary_buffer;
case StereoMode::SBS:
case StereoMode::TAB:
case StereoMode::Off:
default:
return false;
}
}
bool PostProcessing::CompilePipeline()
{
// Not needed. Some backends don't like making pipelines with no targets,
// and in any case, we don't need to render anything if that happened.
if (m_framebuffer_format == AbstractTextureFormat::Undefined)
return true;
// If this is true, the "m_default_pipeline" won't be the only one that runs
const bool needs_intermediary_buffer = NeedsIntermediaryBuffer();
AbstractPipelineConfig config = {};
config.vertex_shader = m_default_vertex_shader.get();
// This geometry shader will take care of reading both layer 0 and 1 on the source texture,
// and writing to both layer 0 and 1 on the render target.
config.geometry_shader = UseGeometryShaderForPostProcess(needs_intermediary_buffer) ?
g_shader_cache->GetTexcoordGeometryShader() :
nullptr;
config.pixel_shader = m_default_pixel_shader.get();
config.rasterization_state = RenderState::GetNoCullRasterizationState(PrimitiveType::Triangles);
config.depth_state = RenderState::GetNoDepthTestingDepthState();
config.blending_state = RenderState::GetNoBlendingBlendState();
config.framebuffer_state = RenderState::GetColorFramebufferState(
needs_intermediary_buffer ? s_intermediary_buffer_format : m_framebuffer_format);
config.usage = AbstractPipelineUsage::Utility;
// We continue even if it failed, it will be skipped later on
if (config.pixel_shader)
m_default_pipeline = g_gfx->CreatePipeline(config);
config.vertex_shader = m_vertex_shader.get();
config.geometry_shader = UseGeometryShaderForPostProcess(false) ?
g_shader_cache->GetTexcoordGeometryShader() :
nullptr;
config.pixel_shader = m_pixel_shader.get();
config.framebuffer_state = RenderState::GetColorFramebufferState(m_framebuffer_format);
m_pipeline = g_gfx->CreatePipeline(config);
if (!m_pipeline)
return false;
return true;
}
} // namespace VideoCommon