dolphin/Source/Core/VideoCommon/FramebufferManager.h
Filoppi 3f102ea8c2 Video: Make the game resolution (within the window) snap to the XFB size if they are within a ~1 pixel treshold on one axis only.
This takes care of making the image clearer in some edge cases where the game was already running at near perfect
 4:3 with no stretching, and the VI aspect ratio didn't match the XFB by one pixel, making the image stretched and blurry.
-Video: Fix `FindClosestIntegerResolution() using the window aspect ratio and not the draw aspect ratio, causing it to prefer
 stretching over black bars in cases when it wasn't desirable.
2024-02-20 03:09:11 +02:00

245 lines
8.7 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <memory>
#include <optional>
#include <tuple>
#include "Common/CommonTypes.h"
#include "Common/EnumFormatter.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractPipeline.h"
#include "VideoCommon/AbstractStagingTexture.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/TextureConfig.h"
#include "VideoCommon/VideoEvents.h"
class NativeVertexFormat;
class PointerWrap;
enum class EFBReinterpretType
{
RGB8ToRGB565 = 0,
RGB8ToRGBA6 = 1,
RGBA6ToRGB8 = 2,
RGBA6ToRGB565 = 3,
RGB565ToRGB8 = 4,
RGB565ToRGBA6 = 5
};
constexpr u32 NUM_EFB_REINTERPRET_TYPES = 6;
template <>
struct fmt::formatter<EFBReinterpretType> : EnumFormatter<EFBReinterpretType::RGB565ToRGBA6>
{
static constexpr array_type names = {"RGB8 to RGB565", "RGB8 to RGBA6", "RGBA6 to RGB8",
"RGB6 to RGB565", "RGB565 to RGB8", "RGB565 to RGBA6"};
constexpr formatter() : EnumFormatter(names) {}
};
inline bool AddressRangesOverlap(u32 aLower, u32 aUpper, u32 bLower, u32 bUpper)
{
return !((aLower >= bUpper) || (bLower >= aUpper));
}
class FramebufferManager final
{
public:
FramebufferManager();
virtual ~FramebufferManager();
// Does not require the framebuffer to be created. Slower than direct queries.
static AbstractTextureFormat GetEFBColorFormat();
static AbstractTextureFormat GetEFBDepthFormat();
static AbstractTextureFormat GetEFBDepthCopyFormat();
static TextureConfig GetEFBColorTextureConfig(u32 width, u32 height);
static TextureConfig GetEFBDepthTextureConfig(u32 width, u32 height);
// Accessors.
AbstractTexture* GetEFBColorTexture() const { return m_efb_color_texture.get(); }
AbstractTexture* GetEFBDepthTexture() const { return m_efb_depth_texture.get(); }
AbstractFramebuffer* GetEFBFramebuffer() const { return m_efb_framebuffer.get(); }
u32 GetEFBWidth() const { return m_efb_color_texture->GetWidth(); }
u32 GetEFBHeight() const { return m_efb_color_texture->GetHeight(); }
u32 GetEFBLayers() const { return m_efb_color_texture->GetLayers(); }
u32 GetEFBSamples() const { return m_efb_color_texture->GetSamples(); }
bool IsEFBMultisampled() const { return m_efb_color_texture->IsMultisampled(); }
bool IsEFBStereo() const { return m_efb_color_texture->GetLayers() > 1; }
FramebufferState GetEFBFramebufferState() const;
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
MathUtil::Rectangle<int> ConvertEFBRectangle(const MathUtil::Rectangle<int>& rc) const;
unsigned int GetEFBScale() const;
// Use this to upscale native EFB coordinates to IDEAL internal resolution
int EFBToScaledX(int x) const;
int EFBToScaledY(int y) const;
// Floating point versions of the above - only use them if really necessary
float EFBToScaledXf(float x) const;
float EFBToScaledYf(float y) const;
// First-time setup.
bool Initialize();
// Recreate EFB framebuffers, call when the EFB size (IR) changes.
void RecreateEFBFramebuffer();
// Recompile shaders, use when MSAA mode changes.
void RecompileShaders();
// This is virtual, because D3D has both normalized and integer framebuffers.
void BindEFBFramebuffer();
// Resolve color/depth textures to a non-msaa texture, and return it.
AbstractTexture* ResolveEFBColorTexture(const MathUtil::Rectangle<int>& region);
AbstractTexture* ResolveEFBDepthTexture(const MathUtil::Rectangle<int>& region,
bool force_r32f = false);
// Reinterpret pixel format of EFB color texture.
// Assumes no render pass is currently in progress.
// Swaps EFB framebuffers, so re-bind afterwards.
bool ReinterpretPixelData(EFBReinterpretType convtype);
PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; }
void StorePixelFormat(PixelFormat new_format) { m_prev_efb_format = new_format; }
// Clears the EFB using shaders.
void ClearEFB(const MathUtil::Rectangle<int>& rc, bool clear_color, bool clear_alpha,
bool clear_z, u32 color, u32 z);
AbstractPipeline* GetClearPipeline(bool clear_color, bool clear_alpha, bool clear_z) const;
// Reads a framebuffer value back from the GPU. This may block if the cache is not current.
u32 PeekEFBColor(u32 x, u32 y);
float PeekEFBDepth(u32 x, u32 y);
void SetEFBCacheTileSize(u32 size);
void InvalidatePeekCache(bool forced = true);
void RefreshPeekCache();
void FlagPeekCacheAsOutOfDate();
void EndOfFrame();
// Writes a value to the framebuffer. This will never block, and writes will be batched.
void PokeEFBColor(u32 x, u32 y, u32 color);
void PokeEFBDepth(u32 x, u32 y, float depth);
void FlushEFBPokes();
// Save state load/save.
void DoState(PointerWrap& p);
protected:
struct EFBPokeVertex
{
float position[4];
u32 color;
};
static_assert(std::is_standard_layout<EFBPokeVertex>::value, "EFBPokeVertex is standard-layout");
struct EFBCacheTile
{
bool present;
u8 frame_access_mask;
};
// EFB cache - for CPU EFB access
// Tiles are ordered left-to-right, then top-to-bottom
struct EFBCacheData
{
std::unique_ptr<AbstractTexture> texture;
std::unique_ptr<AbstractFramebuffer> framebuffer;
std::unique_ptr<AbstractStagingTexture> readback_texture;
std::unique_ptr<AbstractPipeline> copy_pipeline;
std::vector<EFBCacheTile> tiles;
bool out_of_date;
bool has_active_tiles;
bool needs_refresh;
bool needs_flush;
};
bool CreateEFBFramebuffer();
void DestroyEFBFramebuffer();
bool CompileConversionPipelines();
void DestroyConversionPipelines();
bool CompileReadbackPipelines();
void DestroyReadbackPipelines();
bool CreateReadbackFramebuffer();
void DestroyReadbackFramebuffer();
bool CompileClearPipelines();
void DestroyClearPipelines();
bool CompilePokePipelines();
void DestroyPokePipelines();
bool IsUsingTiledEFBCache() const;
bool IsEFBCacheTilePresent(bool depth, u32 x, u32 y, u32* tile_index) const;
MathUtil::Rectangle<int> GetEFBCacheTileRect(u32 tile_index) const;
void PopulateEFBCache(bool depth, u32 tile_index, bool async = false);
void CreatePokeVertices(std::vector<EFBPokeVertex>* destination_list, u32 x, u32 y, float z,
u32 color);
void DrawPokeVertices(const EFBPokeVertex* vertices, u32 vertex_count,
const AbstractPipeline* pipeline);
std::tuple<u32, u32> CalculateTargetSize();
void DoLoadState(PointerWrap& p);
void DoSaveState(PointerWrap& p);
float m_efb_scale = 1.0f;
PixelFormat m_prev_efb_format;
std::unique_ptr<AbstractTexture> m_efb_color_texture;
std::unique_ptr<AbstractTexture> m_efb_convert_color_texture;
std::unique_ptr<AbstractTexture> m_efb_depth_texture;
std::unique_ptr<AbstractTexture> m_efb_resolve_color_texture;
std::unique_ptr<AbstractTexture> m_efb_depth_resolve_texture;
std::unique_ptr<AbstractFramebuffer> m_efb_framebuffer;
std::unique_ptr<AbstractFramebuffer> m_efb_convert_framebuffer;
std::unique_ptr<AbstractFramebuffer> m_efb_color_resolve_framebuffer;
std::unique_ptr<AbstractFramebuffer> m_efb_depth_resolve_framebuffer;
std::unique_ptr<AbstractPipeline> m_efb_color_resolve_pipeline;
std::unique_ptr<AbstractPipeline> m_efb_depth_resolve_pipeline;
// Pipeline for restoring the contents of the EFB from a save state
std::unique_ptr<AbstractPipeline> m_efb_restore_pipeline;
// Format conversion shaders
std::array<std::unique_ptr<AbstractPipeline>, 6> m_format_conversion_pipelines;
// EFB cache - for CPU EFB access (EFB peeks/pokes), not for EFB copies
// Width and height of a tile in pixels at 1x IR. 0 indicates non-tiled, in which case a single
// tile is used for the entire EFB.
// Note that as EFB peeks and pokes are a CPU feature, they always operate at 1x IR.
u32 m_efb_cache_tile_size = 0;
// Number of tiles that make up a row in m_efb_color_cache.tiles / m_efb_depth_cache.tiles.
u32 m_efb_cache_tile_row_stride = 1;
EFBCacheData m_efb_color_cache = {};
EFBCacheData m_efb_depth_cache = {};
// EFB clear pipelines
// Indexed by [color_write_enabled][alpha_write_enabled][depth_write_enabled]
std::array<std::array<std::array<std::unique_ptr<AbstractPipeline>, 2>, 2>, 2> m_clear_pipelines;
// EFB poke drawing setup
std::unique_ptr<NativeVertexFormat> m_poke_vertex_format;
std::unique_ptr<AbstractPipeline> m_color_poke_pipeline;
std::unique_ptr<AbstractPipeline> m_depth_poke_pipeline;
std::vector<EFBPokeVertex> m_color_poke_vertices;
std::vector<EFBPokeVertex> m_depth_poke_vertices;
Common::EventHook m_end_of_frame_event;
};
extern std::unique_ptr<FramebufferManager> g_framebuffer_manager;