mirror of
https://github.com/dolphin-emu/dolphin
synced 2024-11-04 20:43:44 -05:00
784a216927
Gets this out of the global namespace.
194 lines
5 KiB
C++
194 lines
5 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <bit>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
|
|
namespace MathUtil
|
|
{
|
|
constexpr double TAU = 6.2831853071795865;
|
|
constexpr double PI = TAU / 2;
|
|
constexpr double GRAVITY_ACCELERATION = 9.80665;
|
|
|
|
template <typename T>
|
|
constexpr auto Sign(const T& val) -> decltype((T{} < val) - (val < T{}))
|
|
{
|
|
return (T{} < val) - (val < T{});
|
|
}
|
|
|
|
template <typename T, typename F>
|
|
constexpr auto Lerp(const T& x, const T& y, const F& a) -> decltype(x + (y - x) * a)
|
|
{
|
|
return x + (y - x) * a;
|
|
}
|
|
|
|
// Casts the specified value to a Dest. The value will be clamped to fit in the destination type.
|
|
// Warning: The result of SaturatingCast(NaN) is undefined.
|
|
template <typename Dest, typename T>
|
|
constexpr Dest SaturatingCast(T value)
|
|
{
|
|
static_assert(std::is_integral<Dest>());
|
|
|
|
[[maybe_unused]] constexpr Dest lo = std::numeric_limits<Dest>::lowest();
|
|
constexpr Dest hi = std::numeric_limits<Dest>::max();
|
|
|
|
// T being a signed integer and Dest unsigned is a problematic case because the value will
|
|
// be converted into an unsigned integer, and u32(...) < 0 is always false.
|
|
if constexpr (std::is_integral<T>() && std::is_signed<T>() && std::is_unsigned<Dest>())
|
|
{
|
|
static_assert(lo == 0);
|
|
if (value < 0)
|
|
return lo;
|
|
// Now that we got rid of negative values, we can safely cast value to an unsigned T
|
|
// since unsigned T can represent any positive value signed T could represent.
|
|
// The compiler will then promote the LHS or the RHS if necessary.
|
|
if (std::make_unsigned_t<T>(value) > hi)
|
|
return hi;
|
|
}
|
|
else if constexpr (std::is_integral<T>() && std::is_unsigned<T>() && std::is_signed<Dest>())
|
|
{
|
|
// value and hi will never be negative, and hi is representable as an unsigned Dest.
|
|
if (value > std::make_unsigned_t<Dest>(hi))
|
|
return hi;
|
|
}
|
|
else
|
|
{
|
|
// Do not use std::clamp or a similar function here to avoid overflow.
|
|
// For example, if Dest = s64 and T = int, we want integer promotion to convert value to a s64
|
|
// instead of changing lo or hi into an int.
|
|
if (value < lo)
|
|
return lo;
|
|
if (value > hi)
|
|
return hi;
|
|
}
|
|
return static_cast<Dest>(value);
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool IsPow2(T imm)
|
|
{
|
|
return imm > 0 && (imm & (imm - 1)) == 0;
|
|
}
|
|
|
|
constexpr u32 NextPowerOf2(u32 value)
|
|
{
|
|
--value;
|
|
value |= value >> 1;
|
|
value |= value >> 2;
|
|
value |= value >> 4;
|
|
value |= value >> 8;
|
|
value |= value >> 16;
|
|
++value;
|
|
|
|
return value;
|
|
}
|
|
|
|
template <class T>
|
|
struct Rectangle
|
|
{
|
|
T left{};
|
|
T top{};
|
|
T right{};
|
|
T bottom{};
|
|
|
|
constexpr Rectangle() = default;
|
|
|
|
constexpr Rectangle(T theLeft, T theTop, T theRight, T theBottom)
|
|
: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
|
|
{
|
|
}
|
|
|
|
constexpr bool operator==(const Rectangle& r) const
|
|
{
|
|
return left == r.left && top == r.top && right == r.right && bottom == r.bottom;
|
|
}
|
|
|
|
constexpr T GetWidth() const { return GetDistance(left, right); }
|
|
constexpr T GetHeight() const { return GetDistance(top, bottom); }
|
|
// If the rectangle is in a coordinate system with a lower-left origin, use
|
|
// this Clamp.
|
|
void ClampLL(T x1, T y1, T x2, T y2)
|
|
{
|
|
left = std::clamp(left, x1, x2);
|
|
right = std::clamp(right, x1, x2);
|
|
top = std::clamp(top, y2, y1);
|
|
bottom = std::clamp(bottom, y2, y1);
|
|
}
|
|
|
|
// If the rectangle is in a coordinate system with an upper-left origin,
|
|
// use this Clamp.
|
|
void ClampUL(T x1, T y1, T x2, T y2)
|
|
{
|
|
left = std::clamp(left, x1, x2);
|
|
right = std::clamp(right, x1, x2);
|
|
top = std::clamp(top, y1, y2);
|
|
bottom = std::clamp(bottom, y1, y2);
|
|
}
|
|
|
|
private:
|
|
constexpr T GetDistance(T a, T b) const
|
|
{
|
|
if constexpr (std::is_unsigned<T>())
|
|
return b > a ? b - a : a - b;
|
|
else
|
|
return std::abs(b - a);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class RunningMean
|
|
{
|
|
public:
|
|
constexpr void Clear() { *this = {}; }
|
|
|
|
constexpr void Push(T x) { m_mean = m_mean + (x - m_mean) / ++m_count; }
|
|
|
|
constexpr size_t Count() const { return m_count; }
|
|
constexpr T Mean() const { return m_mean; }
|
|
|
|
private:
|
|
size_t m_count = 0;
|
|
T m_mean{};
|
|
};
|
|
|
|
template <typename T>
|
|
class RunningVariance
|
|
{
|
|
public:
|
|
constexpr void Clear() { *this = {}; }
|
|
|
|
constexpr void Push(T x)
|
|
{
|
|
const auto old_mean = m_running_mean.Mean();
|
|
m_running_mean.Push(x);
|
|
m_variance += (x - old_mean) * (x - m_running_mean.Mean());
|
|
}
|
|
|
|
constexpr size_t Count() const { return m_running_mean.Count(); }
|
|
constexpr T Mean() const { return m_running_mean.Mean(); }
|
|
|
|
constexpr T Variance() const { return m_variance / (Count() - 1); }
|
|
T StandardDeviation() const { return std::sqrt(Variance()); }
|
|
|
|
constexpr T PopulationVariance() const { return m_variance / Count(); }
|
|
T PopulationStandardDeviation() const { return std::sqrt(PopulationVariance()); }
|
|
|
|
private:
|
|
RunningMean<T> m_running_mean;
|
|
T m_variance{};
|
|
};
|
|
|
|
// Rounds down. 0 -> undefined
|
|
constexpr int IntLog2(u64 val)
|
|
{
|
|
return 63 - std::countl_zero(val);
|
|
}
|
|
} // namespace MathUtil
|